*More than 150,000 articles In the
search database

*Learn how almost everything
works

http://www.getpedia.com/
http://www.getpedia.com

PL/SQL
by Mark V. Scardina, Ben Chang and Jinyu Wang
McGraw-Hill/Osborne © 2004 (600 pages)

emphasis on XML standards, their usage and best practices.

Table of Contents

Oracle Database 10g XML & SQOL—Design, Build & Manage XML Applications in Java, C, C++ & PL/SQL

Introduction

Part | - Oracle and the XML Standards

Chapter 1 - Introducing XML

Chapter 2 - Accessing XML with DOM, SAX, JAXB, and StAX
Chapter 3 - Transforming XML with XSLT and XPath

Chapter 4 - Validating XML with DTDs and XML Schemas
Chapter 5 - XML Operations with XQuery

Chapter 6 - XML Messaging and RPC with SOAP

Chapter 7 - Putting It All Together with XML Pipeline, JSPs, and XSQL
Part 11 - Oracle XML Management for DBAs

Chapter 8 - Getting Started with the Oracle XML Database
Chapter 9 - Storing XML Data

Chapter 10 - Generating and Retrieving XML

Chapter 11 - Searching XML Data

Chapter 12 - Managing the Oracle XML Database

Part 111 - Oracle XML for Java Developers

Chapter 13 - Getting Started with Oracle XML and Java
Chapter 14 - Building an XML-Powered Web Site

Chapter 15 - Creating a Portal Site with XML and Web Services
Chapter 16 - Developing an XML Gateway Application with SOAP and AQ
Chapter 17 - Developing XML-Based Reusable Components
Part 1V - Oracle XML for C Developers

Chapter 18 - Getting Started with Oracle XML and C

Chapter 19 - Building an XML-Managed Application

Chapter 20 - Build an XML Database OCI Application

Chapter 21 - Create an XML-Configured High-Performance Transformation Engine
Part V - Oracle XML for C++ Developers

Chapter 22 - Getting Started with Oracle XML and C++
Chapter 23 - Build an XML Database OCI C++ Application
Chapter 24 - Building an XML Data-Retrieval Application

Part VI - Oracle XML for PL/SQL Developers

Chapter 25 - Getting Started with Oracle XML and PL/SQL
Chapter 26 - Building PL/SQL Web Services

Chapter 27 - Extending PL/SQL XML Functionality with Java
Chapter 28 - Putting It All Together

Appendix - XML Standards Bodies and Open Specifications
Glossary

Index

List of Figures
List of Tables

List of Sidebars

=

Oracle Database 10g XML & SQL: Design, Build & Manage XML Applications in Java, C, C++ &

ISBN:0072229527

This comprehensive guide focuses on utilizing XML technologies within Oracle's XML-enabled products, with

e |

[« Freviovs [nexrs]

Back Cover

Written by members of the Oracle XML group, this is a must-have reference for all IT managers, DBAs, and developers who
want to learn the best practices for using XML with Oracle’s XML-enabled products. Includes real-world case studies based
on the authors’ experience managing Oracle’s XML Discussion Forum--a community of 20,000+ XML component users.

About the Authors

Mark V. Scardina is Oracle’s XML Evangelist for Server products and is the Group Product Manager for the CORE and XML
Development Group tasked with providing the XML infrastructure components used throughout the Oracle product stack,
including the Oracle XML Developer’s Kit. Mark chairs the Oracle XML Standards committee and is an editor on the W3C XSL
Working Group. He is a frequent speaker at industry trade shows and conferences, a writer for industry journals and is co-
author of Oracle9i XML Handbook and Oracle XML Handbook . Prior to joining Oracle, he worked at Socket Communications
and ACE Technologies. He holds a B.S. in Information Systems Management from USF.

Ben Chang is a 15-year veteran at Oracle Corp., where he heads the CORE and XML Development Group as Director. In
addition to working on Oracle6 to Oracle Database 10g releases, he served the longest tenure as Development Release
Manager for Oracle 8.0, spanning five releases. He also served three years as chair of Oracle’s C Coding Standards
Committee, and he was a W3C DOM Working Group editor. He is co-author of Oracle9i XML Handbook and Oracle XML
Handbook. Before coming to Oracle, he worked at IBM Corp., Pacific Bell, Bellcore, and GE Corporate R&D. He holds an M.S.
in Electrical Engineering (Computer Systems) from Stanford University and a B.S. in Electrical Engineering and Computer
Science from the University of California at Berkeley.

Jinyu Wang is a Senior Product Manager for Oracle XML Product management, in charge of the Oracle XML Developer’s Kit,
which provides the XML infrastructure components used across Oracle product stacks. As an Oracle Certified Professional
with an extensive database background, she leads a variety of projects that successfully apply XML technologies to
enterprise business applications. While completing her master’s degree in computer science at the University of Southern
California and electrical engineering at Northern Jiaotong University, she worked on artificial intelligence and computer
vision, focusing on motion analysis.

[« rreviovs [ecr o |

[« Freviovs [nexrs]

Oracle Database 10g XML & SQL—Design, Build &
Manage XML Applications in Java, C, C++ & PL/SQL

Mark V. Scardina
Ben Chang
Jinyu Wang

McGraw-Hill/Osborne

2100 Powell Street, 10th Floor
Emeryville, California 94608
U.S.A

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please contact McGraw-
Hill/Osborne at the above address. For information on translations or book distributors outside the U.S.A., please
see the International Contact Information page immediately following the index of this book.

Copyright © 2004 by The McGraw-Hill Companies, Inc. (Publisher). All rights reserved. Printed in the United States
of America. Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a database or retrieval system, without the prior written
permission of Publisher.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of
Oracle Corporation and/or its affiliates.

1234567890 CUS CUS 01987654
ISBN 0-07-222952-7

Publisher
Brandon A. Nordin

Vice President & Associate Publisher
Scott Rogers

Acquisitions Editor
Lisa McClain

Project Editors
LeeAnn Pickrell,
Lisa Wolters-Broder,
Emily Wolman

Acquisitions Coordinator
Athena Honore

Technical Editors
Olivier Le Diouris, Anjana Manian

Copy Editor
William McManus

Proofreader
John Gildersleeve

Indexer
Irv Hershman

Composition
Apollo Publishing Services, Jim Kussow

lllustrators
Kathleen Edwards,

Michael Mueller,
Melinda Lytle

Series Design

Jani Beckwith

Cover Series Design
Damore Johann Design, Inc.

This book was composed with Corel VENTURA™ Publisher.

Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility
of human or mechanical error by our sources, Publisher, or others, Publisher does not guarantee to the accuracy,
adequacy, or completeness of any information included in this work and is not responsible for any errors or
omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or
completeness of any information contained in this Work, and is not responsible for any errors or omissions.

To my family for their understanding, tolerance, and support through the late nights and lost weekends. To my
coworkers for accepting without complaint my interruptions for technical help and advice.
—Mark Scardina

To my family for their support.
—Ben Chang

I would like to thank first and foremost my husband, Yong, for his support when | worked on this book. I'd also like
to thank my colleagues on the Oracle XML development team who gave me invaluable help.
—Jinyu Wang

About the Authors

Mark V. Scardina is Oracle’s XML Evangelist for Server products and is the Group Product Manager for the CORE
and XML Development Group tasked with providing the XML infrastructure components used throughout the Oracle
product stack, including the Oracle XML Developer’s Kit. Mark chairs the Oracle XML Standards committee and is
an editor on the W3C XSL Working Group. He is a frequent speaker at industry trade shows and conferences, a
writer for industry journals and is co-author of Oracle9i XML Handbook and Oracle XML Handbook. Prior to joining
Oracle, he worked at Socket Communications and ACE Technologies. He holds a B.S. in Information Systems
Management from USF.

Mark lives in San Francisco with his wife and twin boys. His hobbies include DanceSport, high-end audio/video, and
working on his house.

Ben Chang is a 15-year veteran at Oracle Corp., where he heads the CORE and XML Development Group as
Director. In addition to working on Oracle6 to Oracle Database 10g releases, he served the longest tenure as
Development Release Manager for Oracle 8.0, spanning five releases. He also served three years as chair of
Oracle’s C Coding Standards Committee, and he was a W3C DOM Working Group editor. He is co-author of
Oracle9i XML Handbook and Oracle XML Handbook. Before coming to Oracle, he worked at IBM Corp., Pacific Bell,
Bellcore, and GE Corporate R&D. He holds an M.S. in Electrical Engineering (Computer Systems) from Stanford
University and a B.S. in Electrical Engineering and Computer Science from the University of California at Berkeley.

Jinyu Wang is a Senior Product Manager for Oracle XML Product management, in charge of the Oracle XML
Developer's Kit, which provides the XML infrastructure components used across Oracle product stacks. As an
Oracle Certified Professional with an extensive database background, she leads a variety of projects that
successfully apply XML technologies to enterprise business applications. While completing her master’s degree in
computer science at the University of Southern California and electrical engineering at Northern Jiaotong University,
she worked on artificial intelligence and computer vision, focusing on motion analysis.

[« rreviovs [nexr s |

[« rrevious [[nexr »
Introduction

XML is now six years old, having been published as a W3C recommendation in February 1998. It was around that
time that Oracle began to take a serious look at this new promising technology. In fact the Architectural Review
Board decided that XML was going to be of company-wide importance and handed down a development charter to
the CORE Development group as follows:

Deliver the best platform for developers to productively build and cost-effectively deploy reliable and scaleable
Internet applications exploiting XML.

This charter has proven to be prescient as not only has XML become a dominant Internet technology, but also has
spawned an entire family of standards that are becoming the foundation of electronic publishing, business, and
application development. The impact of XML has been felt to no greater measure than within Oracle and has kept
the now CORE and XML Development group busy these many years. The authors are members of this group and
have had the opportunity to not only participate in the XML standards process and produce the implementations but
alsowork with over a hundred development groups across Oracle and countless customers in putting this family of
technologies to work in a myriad of ways. Thus we hope to bring to you not only the means to put Oracle’s XML
technology to work, but also new ways and new ideas for using XML in your applications.

Over the years, the XML dialog has changed. It used to be asked, when talking with new users or businesses
contemplating XML, What is all this fuss about?Why would | want to exchange data in a bloated form having lost its
binding? What is the one killer XML application?

These were tough questions, primarily because XML is not an end but a means. Its strength and its weakness are in
its ability to be infinitely flexible and extensible. Fortunately, as companion standards such as XSL, XML Schema,
Namespaces, XPath, and so on, were developed and rolled out businesses and their developers stopped asking
Why XML? and started asking How XML? which leads us to why we wrote this book.

You may be surprised to learn that Oracle does not have a research and development division. All development is
done in the context of a product. This can make developing new technologies difficult as these standards efforts
evolve, have bugs, and have taken years to stabilize. This can be seen in the years it took to publish XML Schema
and that XML Query is in its fifth year and still not out the door. Nevertheless, Oracle has been an early adopter in all
of these technologies, putting them to work within all Oracle products.

This situation gave birth to the Oracle XML Developer’s Kit in 1999 as a vehicle to expose implementations of these
technologies to both the internal and external development community. This was desirable, as it would allow us to
bring these implementations to production quicker using the beta facilities of the Oracle Technology Network (OTN),
getting feedback from a broad spectrum of developers looking for XML functionality. Productizing Oracle’s XML
infrastructure for external use meant that we had to develop a license. At that time the only Oracle licenses available
were either a product license that limited usage to one’s own deployment or a development one that forbid
deployment. Neither of these made sense for a software development kit that we weren’t charging for and wanted
people to develop against seriously. We were able to successfully navigate Oracle’s legal system to create a
deployment and redistribution license for the XDK that exists to this day.

The license wasn't enough as we were looking for serious enterprise-level development and deployments. We
needed support as well. Therefore we again successfully negotiated to have the XDK be included as part of the
Oracle server support contracts for the database, application server, and tools at the same service level at no
additional charge. Additionally, we were able to offer standalone support agreements for non-Oracle customers.
Finally, for those who could not afford or did not need formal support, we opened a support forum on OTN, which
has rapidly grown to six forums that we directly support. Over the last five years we have released both beta and
production XDKs at roughly three month intervals. Beta versions have a time-based development-only license but
the production releases have the full redistribution license.

Finally we come to this book. While this is the third book for two of us, it represents a totally different effort from the
previous Oracle XML Handbook and Oracle9i XML Handbook. Those previous editions provided a survey of Oracle
and XML and in-depth discussions about the XDK. This edition is totally rewritten with almost all new content. While
the previous editions came with CDs, this one does not for two very important reasons. First, all the code in the book
will be downloadable from the Oracle Press web site. As distinct from a CD, this allows us to update it should any
bugs appear. In the previous editions we provided Oracle software on the CD; however, it forced us to include only
Oracle software, so we made most of the code available on OTN. This had the unanticipated effect of lessening the
book’s value in some reader's minds. This edition does not suffer under those limitations, so you will find more
original and innovative content and all of the code available for download.

The book is divided into six parts and is organized to be accessible by managers, DBAs, and developers alike. Part |
includesChapters 1 through 7 and focuses on the family of XML standards that are important to Oracle and that
should be considered when designing XML-enabled solutions. These not only discuss the common standards of
DOM, SAX, XSLT, and XML Schema, but venture into new standards, some of which are not complete, such as
XML Query, XML Pipeline, StAX, and JAXB. These chapters are not intended to be comprehensive in their
coverage, as whole books have been written on many of them. They do intend to give you a good feel for the
functionality offered and to compare and contrast similar standards thus providing guidance in their optimum usage.

Part Il includes Chapters 8 through 12 and focuses on XML and the Oracle database. Beginning in Oracle9i Release
2, native XML support was introduced along with significant XML functionality integrated into other database features
such as Oracle Text and Advanced Queuing. These chapters provide an in-depth look at this functionality and its
evolution into Oracle Database 10g. After getting started in Chapter 8, the chapters are arranged along task lines
such as storing XML, retrieving and generating XML, searching and querying XML, and managing the Oracle XML
DB. These chapters are designed to be accessible to both developers and DBAs.

Parts Il through VI consists of Chapters 13 through 28 and focus on how to use Oracle’s XML technology for real
application development. These chapters are split into Oracle’s major development languages of Java, C, C++, and
PL/SQL. Each language begins with a getting started chapter covering environment, IDE setup, runtime setup, and
so on. The subsequent chapters in these parts discuss real-use case application scenarios. In many instances,
these were drawn from actual customer projects. While they include extensive source code, each example is
explained in detail and the code is available for download from Oracle Press.

This book was written during the development of Oracle Database 10g and as such could not have been completed
without the help of many within Oracle. The authors wish to especially thank the following:

K Karun Tomas Saulys TimYu

Bill Han Anjana Manian Meghna Mehta
Kongyi Zhou Stanley Guan lan Macky
Dimitry Lenkov Anguel Novoselsky Mark Drake
Stephen Buxton Asha Tarachandani Ravi Murthy
Nipun Agarwal Jim Warner Olivier LeDiouris
Bhushan.Khaladkar Dan Chiba

[« rreviovs [nexr s |

[« erevious [next o]
Part I: Oracle and the XML Standards

Chapter List

Chapter 1: Introducing XML

Chapter 2: Accessing XML with DOM, SAX, JAXB, and StAX
Chapter 3: Transforming XML with XSLT and XPath

Chapter 4: Validating XML with DTDs and XML Schemas
Chapter 5: XML Operations with XQuery

Chapter 6: XML Messaging and RPC with SOAP

Chapter 7: Putting It All Together with XML Pipeline, JSPs, and XSQL

[erevous Jrecrs

[rrevious e]
Chapter 1: Introducing XML

Extensible Markup Language (XML) is a meta-markup language, meaning that the language, as specified by the
World Wide Web Consortium’s (W3C) XML 1.0 specification, enables users to define their own markup languages to
describe and encapsulate data into XML files. These files can then be transformed into HTML (as well as into any
other markup language) and displayed within browsers such as Netscape Navigator and Microsoft Internet Explorer,
exchanged across the Internet between applications and businesses, or stored in and retrieved from databases. The
power of XML comes from its simplicity, its being part of an open standard, and the incorporation of user-defined
markup tags that lend semantics to the embedded data.

XML’s origins come from the Standard Generalized Markup Language (SGML)—ratified by the International
Standards Organization (ISO) in 1986—on which Hypertext Markup Language (HTML), created in 1990, is based.
While SGML is still a widely used standard in the document world, and HTML is still widely used as the basis of
millions of web pages on the World Wide Web, XML is rapidly gaining widespread acceptance because of its
advantages in data exchange, storage, and description over the existing markup languages. Since the publication of
its v1.0 specifications by the W3C in February 1998, XML has been widely seen as the language and data
interchange of choice for e-commerce.

What Is an XML Document?

While this book is not meant to be a full XML tutorial, as with any standard, numerous concepts and technical terms
need to be explained. Because XML was developed to convey data, a relevant example is a data record of a book
listing from a standard database. A complex SQL query could return data in the following format:

History of Interviews, Juan, Smith, 99999-99999, Oracle Press, 2003.

If XML is used as the output form, however, this record now has additional context for each piece of data, as
evidenced in the following:

<book>
<title>Hi story of Interviews</title>
<aut hor >
<firstname>Juan</firstname>
<l ast nane>Smi t h</ | ast name>
</ aut hor>
<| SBN>99999-99999</ | SBN>
<publ i sher > acl e Press</publisher>
<publ i shyear>2003</publ i shyear>
<price type="US'>10. 00</ price>
</ book>

Certain items of note in this example are explored in detail later. Notice that the file has symmetry, and each piece of
data has its context enclosing it in the form <context> ... </context>. The angle brackets and text inside are called
tags, and each set of tags and its enclosed data is called an element. This relationship can be thought of as similar
to a column in a database table in which the text of the tag is the column heading and the text between the tags is
the data from arow in that column. In the preceding example, title could be the name of the column and History of
Interviews could be the data in a row.

Notice, too, that several tags contain tags instead of data. This is a significant feature of XML, which permits nesting
of data to define relationships better. Returning to the database metaphor, the <author> tag could be modeled as a
table whose columns were <firstname> and <lastname>. In XML terminology, these column tags are referred to as
children of the parent <author> tag.

Now look at the <price> tag and you see that it includes text of the form name="value”. These name-value pairs are
calledattributes, and one or more of these can be included in the start tag of any element. Attributes, however, are
not legal in end tags (for example, </tagname="fo0”>). Notice that attribute values must be framed by quotes
(single or double, as long as the closing and opening quotes are the same) as specified by SGML. HTML is much
more permissive in this area.

One final terminology note: the entire XML example is enclosed by <book> ... </book>. These tags are defined as
theroot of the document, and only one may exist in any particular document. XML documents that follow these rules
of having only one root and properly closing all open tags are considered well formed.

XML’s basic concepts and terminology are straightforward and are formalized in an open Internet standard. As the
W3C XML 1.0 specification states, “XML documents are made up of storage units called entities, which contain
either parsed data or unparsed data. Parsed data [or PCDATA] is made up of characters, some of which form
character data, and some of which form markup. Markup encodes a description of the document's storage layout
and logical structure.” XML documents have both physical and logical structure. The physical structure of the XML
document simply refers to the XML file and the other files that it may import, whereas the logical structure of an XML
document refers to the prolog and the body of the document.

The XML of the book example represents the body of an XML document, but it is missing important information that
helps identify its nature. This information is in the prolog, discussed in the following section.

The Prolog

Theprolog consists of the XML declaration (that is, the version number), a possible language encoding hint, other
attributes (name-value pairs), and an optional grammar or data model specified by either an XML Schema Definition
(XSD) or a Document Type Definition (DTD) referred to by a URL. The prolog may also contain the actual XSD or
DTD. An example with a reference to an external DTD would look like the following:

<?xm version="1.0" encodi ng="UTF-8" standal one="no" ?>
<! DOCTYPE book SYSTEM "book. dt d">

Note that a line containing <? ... ?>is an example of an XML processing instruction (PI). In this example, xml is the
name of the XML PI. In addition, the character set encoding supported in the example is a compressed version of
Unicode called UTF-8. While XML processors usually detect the encoding from the first 3 bytes in the file, this
declaration can be used as a hint to indicate the expected encoding. Finally, the standalone attribute refers to
whether the processor needs to include or import other external files.

The second line of this prolog refers to a DOCTYPE. This is where the declaration of the grammar or data model for
this XML document is done. Why is this important? Remember, an XML file has both physical and logical
representations. In some applications, it may be sufficient to process the XML without knowing whether information
is missing, but most of the time, an application wants to validate the XML document it receives to confirm everything
is there. To do this, the application must know which elements are required, which ones can have children, which
ones can have attributes, and so forth. In XML terms, the grammar or data model in this example is referred to as
DTD. This DTD can reside within the XML file itself or simply be referred to so that the processor can locate it, as in
this example.

The preceding example might look as follows with an XML Schema declaration:

<?xm version="1.0"?>
<xsd: schema xni ns: xsd=http://www w3. or g/ 2001/ XM_.Schema
xm ns: bk="htt p: // wwv. nypubl i shsi te. coml books" >

To begin with, note that the XML Schema declaration has a prefix xsd:, which is associated with the XML Schema
namespace through the declaration xmins:xsd=" http:/www.w3.0rg/ 2001/ XMLSchema”. This prefix is used on

the names of the data types defined in the referenced XSD to differentiate them from others using the same name.
Thexsd:schemadeclaration denotes the beginning of this XML Schema incorporated in this XML document, along
with one other declaration, xmlIns:bk="http:/MWww.mypublishsite.com/books” ,whichdefines the namespace of

the prefix bk:so asto identify these types as defined by the author of this data model.

Note also that the schema declaration is within the <book> tag instead of in the prolog. This is a distinct difference
between XSDs and DTDs. Thus, the XML schema declaration is an attribute of the root element of the document
and is part of the body, which we discuss next.

The Body

The root element, which contains the remainder of the XML document, follows the prolog and is called the body of
the XML document. This part is composed of elements, processing instructions, content, attributes, comments,
entity references, and so forth. As previously mentioned, elements must have start tags and corresponding end tags
nested in the correct order; otherwise, the XML document is not well-formed, and XML parsers may signal errors
because of this. Elements can also have attributes, or name-value pairs, such as <author firstname="Juan”
lastname=" Smith” >. Built-in attributes defined by the XML 1.0 specification also exist, such as
xml:space="preserve” to indicate that the whitespace between the elements be considered as data and thus
preserved.

Entity references, defined only in DTDs, are similar to macros in that entities are defined once, and references to

them, such as &nameofentity, can be used in place of their entire definitions. For example, in aDTD, <IENTITY
Copyright “ Copyright 2000 by Smith, Jones, and Doe — All rights reserved” >could bedeclared, and then
&Copyright could be used as a shortcut throughout the XML document. An XML parser must recognize entities
defined in DTDs, even though the validity check may be turned off and an additional XML Schema is specified.
Again, built-in entities also exist as defined by the XML 1.0 specifications, such as those for the ampersand, &
apostrophe, ' less than, <and so forth. Comments are recognized when they are enclosed in the <!-- -->
construct.

Within the body of the XML document instance, certain element and attribute names may have prefixes, which are
XML namespaces identified by Uniform Resource Identifier (URI) references that qualify the names of these
elements and attributes and locate resources that could be on different machines or XML documents. For example,
if the declaration xmlIns:bk="http:/ www.mypublishsite.com/books” is made in a parent element, the prefix
bk:title stands for http:// www.mypublishsite.com/books:title. You can use identical names for either elements
or attributes if they are qualified with URIs to differentiate the names. For example, bk:hello is called a qualified
name; the namespace prefix bk is mapped to the URI, http://www.mypublishsite.com/books, and the local part is
hello. Note that URI references can contain characters not allowed in element names; that is why bk serves as a
substitute for the URI. It is important to mention that the bk prefix belongs to the document in which it is declared.
Another document declaring the prefix book instead of bk but referencing the same URI would be considered
equivalent when parsed by an XML parser.

Finally, the body may contain character data (CDATA) sections to mark off blocks of text that would otherwise be
regarded as markup, comments, entity references, processing instructions, and so forth. The CDATA syntax is

<I[CDATA[characters including <, > [/, ?, & not |egal anywhere else]]>

These sections are simply skipped by XML parsers as if they were opaque. Later in the book, you will see how you
use them to embed SQL statements in XML documents.

Thus, the body of the XML document contains the root element with its schema declarations, child and sibling
nodes, elements, attributes, text nodes that represent the textual content of an element or attribute, and CDATA
sections.

[previous fuexr]

http:// www.mypublishsite.com/books:title
http://www.mypublishsite.com/books

[« Fprevious [nexr s |
Well-Formed XML Documents

As mentioned previously, an XML document is well formed if only one root exists and all start tags have
corresponding end tags, with the correct nesting. For example, the following is not well formed:

<bookcat al og>
<book>
<title>H story of Interviews</ti>
<aut hor>
<fi rstname>Juan</fir st name>
<l ast nane>Sni t h</ aut hor ></ | ast nane>
<I SBN>99999- 99999</ | SBN>
<publ i sher>Oracl e Press</publi sher>
<publ i shyear >2003</ publ i shyear >
<price type="US">10. 00</pri ce>
</ book>
</bookcat al og>
<bookcat al og2>

</ bookcat al og2>
The following are the reasons why it is not well formed:
m Two roots exists, bookcatalog and bookcatalog?2.
m The<title>tagdoes not have a correct corresponding end tag, as in </title>.
m The endtag </author> is not nested correctly, because the </lasthame>end tag is after it instead of before it.

XML parsers will reject this document without further processing.

[« Frevious Jiecr |

[« Fprevious [nexr s |
Valid XML Documents

A valid XML document is one that conforms to either a specified DTD or XML Schema, meaning that the elements,
attributes, structural relationships, and sequences in the XML document are the same as the ones specified in the
DTD or XML Schema. For example, the following XML is valid with respect to the DTD, which follows it:

<bookcat al og>
<book>
<title>H story of Interview</title>
<aut hor >
<firstname>Juan</firstname>
<l ast nane>Sm t h</ | ast nanme>
</ aut hor>
<| SBN>99999-99999</ | SBN>
<publ i sher > acl e Press</publisher>
<publ i shyear>2003</publ i shyear>
<price type="US'>10. 00</ price>
</ book>
</bookcat al og>

The following is the DTD to which the XML document conforms:

<!-- DID bookcatal og may have a nunber of book entries -->
<! DOCTYPE bookcatal og [
<! ELEMENT bookcat al og (book)*>
<I-- Each book el ement has a title, 1 or nmore authors, etc. -->
<! ELEMENT book (title, author+, |SBN, publisher, publishyear, price)>
<l ELEMENT titl e (#PCDATA) >
<! ELEMENT author (firstnane, | astname)>
<l ELEMENT firstnane (#PCDATA) >
<! ELEMENT | ast nane (#PCDATA) >
<! ELEMENT | SBN (#PCDATA) >
<! ELEMENT publ i sher (#PCDATA) >
<! ELEMENT publ i shyear (#PCDATA)>
<! ELEMENT price (#PCDATA) >
<I ATTLI ST price type (US CAN UK EURO) #REQU RED>
1>

TheDOCTYPE declaration of the DTD specifies the root element—in this case, the <bookcatalog>element. An
element simply consists of a start tag, for example, <title>; all of the text in between, History of Interviews; and the
corresponding end tag, for example, </title>. Only one root element, however, may exist within an XML document.
The root element marks the beginning of the document and is considered the parent of all the other elements, which
are nested within its start tag and end tag. For XML documents to be considered valid with respect to this DTD, the
root element bookcatalog must be the first element to start off the body of the XML document.

Following this are the element declarations, which stipulate the child elements that must be nested within the root
elementbookcatalog, the content model for the root element. Note that all the child elements of bookcatalog are
explicitly called out in its element declaration, and that author has a + as a suffix. This is an example of the

Extended Backus-Naur Format (EBNF) that can be used to describe the content model. The allowed suffixes are

? For O or 1 occurrence
* For O or more occurrences
+ For 1 or more occurrencesNo suffix means 1 and only 1.

Note also the use of #PCDATA to declare that the element text must not be marked-up text, and that price’s
required attribute values are explicitly declared. The difference between CDATA and PCDATA is that CDATA
sections are simply skipped by the parser and aren’'t checked for well-formedness; hence, they can be viewed as
“non-parsed character data.”

Thus a validating XML parser, by parsing the XML document according to the rules specified in this DTD, tries to
determine whether the document conforms to the DTD (is valid), meaning that all the required elements, attributes,
structural relationships, and sequences are as declared.

[« Frevious finecr]
XML Namespaces

Earlier in the chapter, we introduced XML namespaces. This W3C XML standard introduces the following terms with
regard to XML namespaces:

m Local name Represents the name of the element or attribute without the prefix. In the previous example, book,
title,author,ISBN, and so forth are considered local names. These are used whenever there is no concern
over duplicate tag or attribute names. Local name is also used to refer to the name part of a qualified name.

= Qualified name Represents the fully prefixed name. For example, as a continuation of the previous examples,
bk:title,bk:book, and so forth are considered qualified names. Qualified nhames are being used more often
because XML Schemas are defining standard types, such as address, customer, purchase order, and so on,
and there is a need to differentiate semantics.

m Namespace prefix Represents the namespace prefix declared using the special prefix, xmins. The previous
example defined one namespace prefix: bk. Prefixes are scoped and thus must be unique within the children of
the parent element that declared the namespace, but prefixes may be overridden by a new declarationon a
descendent element or attribute.

m Expanded name Represents the result of applying the namespace defined by the namespace prefix to the
qualified name. For example, bk:booklist could be expanded to
http://www.mypublishsite.com/books:booklist. The expanded name is never seen in the XML document
itself, but is conceptually important.

Two kinds of namespace attributes exist: prefixed and default. A prefixed namespace attribute is of the form
nsprefix:attr, where nsprefix is the namespace prefix defined previously. Once a prefix has been declared, it can
be used to specify a namespace for any elements or attributes in the scope of the element where it was declared.
You would, therefore, need to declare global prefixes—that is, prefixes you want to use everywhere in your
document—as attributes of the root element.

The default namespace attribute is xmIns.xmins has the effect of specifying a default namespace for the entire
scope of an element (including the element itself). This default does not apply to the attributes in the subtree,
however. For example, consider the following example:

<bookli st xm ns="http://wwmw. osbor ne.conm books>
<book i sbn="1234-5678-1234" >
<title>Cacle XM. Handbook</titl e>
<author>Oracl e XML Teanx/ aut hor >
</ book>
<book i sbn="24345-564478- 1344234" >
<title>The C programm ng | anguage</title>
<author>Kerni ghan and Rtchie</title>
</ book>
</bookl i st>

This root element declaration has the effect of specifying that all the elements under booklist (book,title,author)
are in the http://www.osborne.com/books namespace. The attribute isbn, however, is not. Default namespaces
can be specified at any level of the document and have the effect of overriding previous declarations. Setting
xmins="* has the effect of removing the default namespace declaration for a particular document subtree.

Namespaces complicate the determination of attribute uniqueness. For example, consider the following example:

<bookli st xm ns:dol | ars="USA" xm ns:pounds="Britain">
<book doll ars: price="7.99" pounds: price="3.99">
<title>The Code of the Wbosters</title>
<author>P. G Wbdehouse </ aut hor >
</ book>
</ bookl i st>

The two price attributes should be considered different, even though they have the same local name, because their
expanded names are different. The following document would not be considered well-formed, however:

<bookli st xm ns:dol | ars="USA" xm ns:currency="USA" >
<book doll ars: price="7.99" currency: price="3.99">
<title>The Code of the Wbosters</title>

http://www.mypublishsite.com/books:booklist
http://www.osborne.com/books

<aut hor>P. G Wbdehouse </ aut hor >
</ book>
</ bookl i st>

Here, even though dollars:price and currency:price have different qualified names, they have the same expanded
name, which means they are, in fact, the same attribute declared twice on the book element. For a similar reason,
only one default namespace is allowed per document.

[« Frevious Jiecr |

[« Fprevious [nexr s |
XML and the Database

Databases and XML offer complementary functionality for storing data. Whereas databases store data for efficient
retrieval, XML offers an easy information exchange that enables interoperability between applications due to its
ability to encapsulate the data with the metadata. Oracle8i, Oracle9i, and, to an even larger extent, Oracle Database
10g enable you to store XML natively and build XML-enabled applications. Storing XML collections in databases
enables you to benefit from not only the full power of a SQL engine but also database administration, business
intelligence, and recovery tools and procedures, such as Oracle Enterprise Manager, Discoverer, and RMAN. You
can use them to enforce rules about data and security, and to block operations that compromise data integrity by
embedding rules and logic in a database. Also, converting database tables into XML documents enables you to take
advantage of XML's features while preserving SQL data types, indexes, and enterprise-level scalability. You can
present XML documents as HTML pages with XSLT stylesheets, search them using XML-based query languages, or
use them as a data-exchange format.

Oracle’s object-relational features have been extended to support hierarchical storage thus enabling you to capture
the complex structure of XML data. You can operate and manage XML data on a desired level of granularity which
lends itself readily to efficiently construct dynamic XML documents from the stored fragments. You can also store
XML documents in a new XMLType data type that supports storing XML as a single document in a virtually
unbounded text data type called Character Large Object (CLOB), as data without tags distributed in object-relational
tables or as both. You can use Oracle Text to perform searches on XML documents stored in CLOBSs.

Note A CLOB is one of the Oracle internal Large Objects (LOBs) whose value is composed of character data
and can store up to 4GB of data. Meanwhile, a VARCHAR2 column in a table has a limit of 4000 bytes,
and a VARCHAR?2 in a PL/SQL variable has a limit of 32767 bytes (32K).

CLOBs can be indexed to search the XML as plain text or as document sections for more precise searches. For
example, you can find Oracle WITHIN <title>, ignoring it elsewhere in the document. Oracle Text also provides full-
text indexing of documents and the capability to do SQL queries over documents, along with XPATH-like searching.
Finally, Oracle’s Advanced Queuing (AQ) now supports XML-based message queuing in the database, supporting
both synchronous and asynchronous communications of XML messages defined in the standard Simple Object
Access Protocol(SOAP) format for both the server and client.

[« rreviovs [exr |

[« Fprevious [nexr s |
Database Schema and XML Documents

XML documents consist of text that conforms to a hierarchy or tree structure specified by a DTD or XML Schema.
As distinct from other strictly relational databases, you can easily store this hierarchical data in an optimal internal
form using Oracle’s object-relational tables, which serve as the foundation for the native XMLType storage. All the
existing and future internal applications can work with the information in the most efficient way possible. When you
retrieve information, for sharing with partners or other applications, you can present the appropriate view of data and
document content specific to the task at hand as integrated XML. These XMLType views enable you to present data
in any number of “logical” combinations, hiding any details of their underlying physical storage. You can effectively
transform the structure of one or more underlying tables into a more useful or more appropriate structure for the
demands of a specific application. When you link views of information with other views of related information, they
quite naturally form “trees” or “graphs” of related data. When you represent database information as XML, the
previous related views provide the foundation for many different tree-structured XML documents.

Here, we offer a simple example of how a database table would be expressed as an XML DTD:

<IDOCTYPE table [
<l ELEMENT table (rows)*>
<! ELEMENT rows (columl, colum2, ...)>
<! ELEMENT col uml (#PCDATA) >
<l ELEMENT col um2 (#PCDATA) >
R

Note, however, that the actual data types in these columns remain unspecified. We can instead use an XML
Schema of the following form:

<xs:elenment name="tabl e">
<XS:sequence>
<xs:el enent nanme="rows">
<XS:sequence >
<xs:el enent name="col uml" type="xs:integer" xdb:SQLType="NUVBER'/ >
<xs:el enent name="col um2" type="xs:string" xdb: SQLType="CLOB"/ >

This does provide us with the column data types through the type attribute which can further constrain the data as
we will discuss later in the database chapters. However, a database provides even more capability to express rules
than does a DTD or an XML Schema. The database schema defines type information and constraints—not only
simple constraints, such as permissible value ranges, but also constraints between columns and tables. A database
schema enables you to define relationships or dependencies. For example, your e-commerce business might
receive orders as XML documents. By using a database, you can link customer and order information, and define a
rule about not processing orders for closed accounts. In spite of the limitations in DTDs or XML Schemas, mapping
a database schema to a DTD or an XML Schema presents the database as a virtual XML document to the tools that
need XML documents as input.

Mapping XML Documents to a Database Schema

When mapping XML documents associated with an XML DTD or an XSD to a database schema for the purpose of
storing XML in Oracle, three basic strategies exist:

m Map the complete XML document as a single, intact object, such as an XMLType CLOB.

m Store the data in relational or object-relational tables and create XMLType views over the data to present it as
an XML document.

= Map XML documents to an Oracle Native XMLType.

You can choose one of the previous approaches, depending on the structure of the XML document and the
operations performed by the application. Each of these three approaches is described in turn next. You can also
store the XML DTD or Schema in the database to validate the XML documents.

XML Documents Stored As XMLType CLOBs

Storing an intact XML document in an XMLType CLOB is a good strategy if the XML document contains static

content that will only be retrieved as a whole or updated by replacing the entire document. Examples include written
text such as articles, advertisements, books, legal briefs, and contracts. Applications that use a repository of this
nature are known as document-centric and operate on the stored XML outside the database. Storing this kind of
document intact within OracleX gives you the advantages of an industry-proven database and its reliability over file
system storage. Upon insertion, XML documents are checked and only committed if well formed. Oracle Text can
provide both content and path indexes to search, but data retrievals need to be done by processing the whole
document. The Oracle XML Developer’s Kit (XDK) provides the functionality to use standards-based interfaces to
access, modify, transform, and validate these documents.

XMLType CLOBs can also be used in conjunction with XMLType views and the Native XML Type described in the
following sections. In these cases, the XML is a well-formed fragment that is treated as a whole.

XML Documents Stored As XMLType Views

When an application is using XML merely as an encapsulation of its data, it is considered to be data-centric.
Typically, the XML document contains elements and attributes that have complex structures, but in reality this
structure is simply metadata to convey the actual data of interest. Examples of this kind of document include sales
orders, invoices, and airline flight schedules. In this case, there is value to maintaining the storage as SQL data
because the actual data types need to be exposed to the application. Oracle Database 10g, with its XMLType
object-relational extensions, has the capability to capture the structure of the data in the database presentitin an
XMLType view while still you can easily update, query, rearrange, and reformat as needed using SQL. The important
distinction to remember is that this view cannot convey document order, comments, processing instructions, or the
whitespace between elements and attributes that are preserved in the CLOB type.

Using XMLType views is especially useful when you are XML-enabling existing applications or database schemas.
This view can serve to abstract the underlying database schema, thereby eliminating the need to modify it to support
XML. In fact, since you can have multiple views of differing XML structure over the same database schema, you can
directly support a different XML schema for each view without the need to apply XSL to transform the documents to
a structure compatible with your database schema.

Applications built against XMLType views have the flexibility of using SQL and SQL-XML interfaces to process within
the database and using the XDK to process either in JServer, middle tier, or client.

XML Documents Stored As Native XMLTypes

Finally, you can store an XML document as a NativeXMLType, where the underlying storage is dictated and created

by its XML schema. This type has the advantages of the other two types together because it stores the XML as SQL
data and preserves byte-for-byte fidelity. Creating this native type is as simple as registering its XML schema, which

not only creates the underlying database schema but also creates a database resource that can be used for access

and updates with the Internet-standard protocols HTTP, FTP, and WebDAV.

Applications that need both a document and data view can make full use of this type, because an extensive array of
SQL, PL/SQL, Java, C, and C++ interfaces is available. Inserts, updates, and deletes are simplified due to Native
XMLType’s support for query rewrites, thereby eliminating the triggers needed by the XMLType views. The Native
XMLType can, however, be used in conjunction with these views to expose differing or subset XML documents. To
further support large documents, a “virtual” or “lazy” DOM is provided through the XDK to access only those
elements that are needed at any one time.

While the native XMLType exposes broad functionality, you need to remember that the underlying storage is
intimately tied to the XML schema that created it. Therefore, it will most likely not be the best choice for applications
that need to support multiple schemas or a nontrivial evolving schema.

[« rreviovs [ecr s |

[« Freviovs [nexrs]

Summary

Oracle provides you with differing strategies to map XML documents into a database schema. Since XML is an
enabling technology and not an application, there is no one strategy that will work optimally for all scenarios. XML is
an abstraction born from the need to exchange content or data in an interoperable manner. XML's cost is the
increased overhead to process its structure and tags, thus your correct selection of XML storage model will have a
significant performance impact on your application. In later chapters, we will walk you through the process of using
each of these strategies with appropriate example applications.

[« Frevious Jiecr |

[« Freviovs [nexrs]

Chapter 2: Accessing XML with DOM, SAX, JAXB, and
StAX

The importance of XML and its related technologies being open standards is that components, libraries, and
applications built to these standards have the potential for a high level of interoperability and reuse. To parse and
access XML documents, you can call upon a number of components and utilities. You can use the W3C-specified
Document Object Model (DOM) APIs to query and manipulate a parsed document or create a new document from
scratch. You can use the Simple AP1 for XML (SAX) event-based APIs for the same purpose without building a full-
blown DOM tree in memory. You can use the Sun Microsystems Java Extension standard Java Architecture for XML
Binding (JAXB) APIs to generate Java code from an XML Schema, which enables you to create and access a
conformant XML document. Finally, the Sun Microsystems Java Extension standard Streaming API for XML
(StAX)APIs enable you to perform stream parsing on an XML document in a manner that is similar to, yet simpler
than, using SAX. The following sections discuss parsing and various accessor APIs and provide examples of how to
use them.

Parsing and Binding an XML Document

Application programs invoke the parse function to read an XML document and provide access to its content and
structure by DOM or SAX APls. Usually, initialization and termination functions must also be invoked in association
with the parse function. Note that various flags, such as to discard white space and to turn on validation, can be set
with some initialization functions before the parse function is invoked by the application program. For example,
whereas some XML parsers are only nonvalidating, meaning they cannot check to see whether the XML document
conforms to the DTD or XML Schema, other parsers, such as those from Oracle, have optional validation, meaning
users can specify validation or nonvalidation before invoking the parse function. In addition, the parse routine must
be able to accept different language encodings as specified in the XML document.

TheOracle XML Parser for Java makes it easy for Java programmers to extend their existing Java applications
seamlessly to support XML. It processes XML documents and provides access to the information contained in them
through a variety of user-friendly APIs. The parser fully supports both the tree-based DOM and event-based SAX
standards. It also has a built-in XSLT processor that makes transforming XML documents from one format to
another extremely simple. The parser can be used in any environment that supports JDK 1.2.x or higher, and it can
also be run inside the Oracle9i and Oracle Database 10g OJVM. The parser is completely internationalized and
supports every character set supported by Java, in addition to numerous others. This support means that the parser
provides error messages in nearly every language supported by Oracle9i and Oracle Database 10g, making it an
invaluable tool if you're writing XML applications for non—English- speaking users.

TheOracle XML Parser for C with its integrated XSLT processor is provided in two forms: as a stand-alone,
command-line executable, and as a library for linking with applications. Most users write their own applications and
use the XML library. The executable is provided as a quick way to familiarize new users with XML by parsing and
validating their own test documents, and it is also used to apply stylesheets to the XML document.

The C library contains APIs for initializing, parsing a file or buffer, resetting and shutting down the parser, plus full
DOM, SAX, and XSLT implementations. Typically, you would use the following sequence:initialize(), parse(),
terminate(). If multiple documents are to be parsed, the sequence would beinitialize(), parse(), parse(), ...,
terminate(). All data presented by a parse remains valid until termination or cleanup. If you need only the results on
each parse without retaining older data, the sequence would beinitialize(), parse(), clean(), parse(), clean(),...,
terminate(). To apply stylesheets to the XML documents, an additional call to xslprocess before terminate() or
clean() would be necessary. See the C header, xml.h, in the XDK distribution for details on available functions.

TheOracle XML Parser for C++ calls the C parser with a wrapper to make it accessible from C++, with both

interfaces provided in the same XML library, oraxmI110.lib or libxml10.a. Everything about the C APIs holds true for
the C++ APIs, except that the C++ APIs are able to provide APIs in an object-oriented manner corresponding to the
class and method names in the DOM specification. See the C++ header, xml.hpp, for details on available functions.

Finally, functionality exists by way of class generators in both Java and C++ to automate the mapping between XML
documents and code, so that generated code can create, access, update, and validate XML documents against
XML Schema. Among the advantages are speed (the generated code is easily generated from input schema), ease
of use (application programmers can easily call these generated routines rather than code their own), and data
conversion (XML document data can be converted to that language’s data types). Using this type of functionality
makes marshalling and unmarshalling XML content back and forth into the language representation very easy and

facilitates the programming of XML applications.

Team LiB m MEXT k

[« revious fnexr]
Accessing XML Using the DOM

DOM is based on an object structure that closely resembles the structure of the documents it models. For instance,
consider the following XML document:

<bookl i st >
<book isbn="0-07-213495-X">
<title>Cacle9 XM Handbook</title>
<aut hor >Chang, Scardi na and Kiritzov</aut hor>
<publ i sher >Gsbor ne</ publ i sher >
<price>49.99</ price>

</ book>

</bookl i st>

In DOM, documents have a logical structure that is similar to a tree, also known as a structure model. In the
example document, you can see the root element booklist serves as the root of the DOM tree, as you would
expect. The root element contains one child, book, which has four children: title,author,publisher, and price; and
one attribute, ISBN. The leaf nodes of the tree are simple text string values. The nodes inthe DOM tree can be
reached by using tree-walking methods (this does not include attributes). One important property of DOM structure
models is structural isomorphism: if any two DOM implementations are used to create a representation of the same
document, they create the same structure model. This means implementations are free to choose any data structure
(not necessarily a tree) to implement DOM. When the XML parser parses the XML document, such a representation
can be formed in memory.

W3C has created a set of DOM APIs for accessing and navigating this structure. Again, the components of this
structure are the root element of the document; elements; attributes; text nodes that represent the textual content of
an element or attribute; CDATA sections to mark off blocks of text that would otherwise be regarded as markup;
comments; entity references; processing instructions; and so forth. XML parsers that provide all the DOM APIs are
considered to be compliant with the W3C DOM recommendation.

The following Java code sample demonstrates a simple use of the parser and DOM APIs. This sample
demonstrates how to set parser options, parse the XML file given to the application, and print the element nodes
and attribute values in the document.

i nport java.io.*;

i nport java. net.*;

i nport org.w3c.dom *;

i nport org.w3c. dom Node;

i nport oracle.xnl.parser.v2. *;

public class DOVsanple {
static public void main(String[] argv){
try {
if (argv.length !'= 1){
/1 Must pass in the name of the XM. file.
Systemerr.println("Usage: java DOVsanple fil enane");
Systemexit(1);
}

/1 Get an instance of the parser
DOMPar ser parser = new DOWParser () ;

/'l Generate a URL fromthe fil enare.
URL url = createURL(argv[0]);

/'l Set various parser options: validation on,
/1 warni ngs shown, error stream set to stderr.
parser.setError Stream(Systemerr);
parser.showarni ngs(true);

/| Parse the docunent.
parser.parse(url);

}

/] Obtain the document.
Docunent doc = parser.get Docunent();

/!l Print docunent elements
Systemout.print("The el enents are: ");
print El enent s(doc);

/! Print docunent el enent attri butes

Systemout.println("The attributes of each el ement are:

print El ement Attri but es(doc);
}
catch (Exception e){
Systemout. printlin(e.toString());
}
}

static void printElenments(Docunent doc) {
NodeLi st nl = doc.get H ement sByTagNane("*");
Node n;

for (int i=0; i<nl.getLength(); i++){
n=mnl.item(i);

System out. print (n. get NodeNane() + " ");
}

Systemout.println();

}

static void printElement Attributes(Document doc) {
NodeLi st nl = doc.get H ement sByTagNane("*");
El emrent e;
Node n;
NanedNodeMap nnm

String attrnane;
String attrval;
int i, len;

len = nl.getLength();

for (int j=0; j < len; j++){

e = (Benent)nl.iten(j);

Systemout. println(e.get TagNarme() + ":");
nnm = e. get Attri butes();

if (nnm!= null){
for (i=0; i<nnmagetlLength(); i++){
n =nnmitenm(i);
attrname = n. get NodeNane();
attrval = n. getNodeVal ue();
Systemout.print(" " + attrname + " =" + attrval);
}
}
Systemout. printin();
}
}

[erevious [e |

[« revious fnexr]
Introducing the DOM APIs

The power of the DOM lies in its capability to provide access to an in-memory structure representation of the entire
XML document. Using the DOM, applications can perform tasks such as searching for specific data in an XML
document, adding or deleting elements and attributes in the XML document, and transforming the DOM to an
entirely different document. Along with the org.w3c.dom interfaces provided by W3C, the Oracle Java XML parser
comes with a set of classes that implement the DOM APIs and extend them to provide other useful features, such
as printing a document fragment or retrieving namespace information.

The following code demonstrates some of the DOM functionality in an XML parser:

/1l This exanple denpnstrates a sinple use of the DQOWParser
/1 An XML file is parsed and some information is printed out.

i nport java.io.*;

i nport java. net.*;

i nport oracl e.xm . parser.v2. DOVPar ser;

i nport org.w3c.dom *;

i mport org. w3c. dom Node;

/1 Extensions to DOM I nterfaces for Nanmespace support.
i nport oracle.xm.parser.v2. XM_H enent ;

i nport oracle.xm.parser.v2. XM_Attr;

public class DOVExanpl e {
public static void mai n(String[] argv){
try {
/1l Generate a new input stream fromgiven file
Fi l el nput Stream xm doc = new Fi | el nput St rean{argv[O0]);

/1 Parse the document using DOMParser
DOMPar ser parser = new DOWParser () ;
parser . parse(xm doc) ;

/1 Obtain the docunent.
Docunent doc = parser.get Docunent();

/1 Print some information regarding attributes of elenents
/1 in the docunent

print El ement Attri but es(doc);

}

catch (Exception e){

Systemout.println(e.toString());

}
}

static void printElementAttri butes(Docunent doc){
NodeLi st nl = doc. get El ement sByTagName("*");

El enent e;

XMLALtr nsAttr;

String attrnane, attrval, attrgnane; NamedNodeMap nnm

for (int j=0; j < nl.getLength(); j++) {
e = (Element) nl.iten(j);
Systemout.println(e.get TagName() + ":");
nnm= e.getAttributes();

if (nnm!=null) {
for (int i=0; i < nnmgetLength(); i++) {
nsAttr = (XMAttr) nnmiten(i);

/1 Use the nethods getQualifiedName(), getLocal Nane(),
/1 get Nanespace(), and get ExpandedNane() in NSName

/1 interface to get Namespace information.

attrname = nsAttr. get ExpandedNane(
attrgname = nsAttr. get Qualifi edName();
attrval = nsAttr.getNodeValue();

Systemout.println(" " + attrgnane + "(" + attrnane +
"y"t + " =" +attrval);
}
}
Systemout.println();
}

}
}.

The DOM APIs, unlike the SAX APIs, can be used only after the XML document is completely parsed. The downside
of this is that large XML documents can occupy a lot of memory, which could ultimately affect the performance of
your application. In pure functionality terms, however, the DOM APIs are definitely more powerful. The first thing you
need to do before you begin using any of the DOM APIs is to parse your document using a new instance of
DOMParser:

// Parse the document using DOMWPar ser
DOVPar ser parser = new DOMWPar ser () ;
par ser . par se(xm doc);

Then, you need to request the parser to return a handle to the root of the Document Object Model, which it has
constructed in memory:

/] Obtain the document.
Docunent doc = parser. get Docunent ();

Using the preceding handle, you can access every part of the XML document you just parsed. The DOMExample
class assumes you want to access the elements in the document and their attributes. To do this, you first need to
obtain a list of all the elements in the document. A DOM method called getElementsByTagName enables you to
retrieve, recursively, all elements that match a given tag name under a certain level. It also supports a special tag
named"*”, which matches any tag. Given this information, you need to invoke this method at the top level of the
document via the handle to the root you obtained earlier in this section:

NodeLi st nl = doc. getEl ementsByTagName("*");

The preceding call generates a list of all the elements in the document. Each of these elements contains the
information regarding its attributes. To access this information, you need to traverse this list:

I en = nl.getLength();
for (int j=0; j < len; j++) {
e = (Element) nl.item(j);

To obtain the attributes of each element in the loop, you can use a DOM method called getAttributes. This method
generates a special kind of DOM list called NamedNodeMap. Once you obtain this list, traversing it to obtain
information about the attributes themselves is straightforward.

DOM Level 2

As DOM evolved into Level 2, it became a modular specification, meaning that some of the new APIs can be stand-
alone modules. Though the specifications are “Level 2,” they are actually 1.0 versions, which can be confusing,
especially when the same DOM Core names are reused. In addition to DOM Level 2 Core, there are Events, Style,
HTML, Traversal and Range, and Views modules. References to these specifications can be found in the appendix
of this book.

The introduction of XML namespaces was the primary force behind the development of the DOM Core Level 2
specification, because all the element and attribute functions now had to accept or retrieve namespaces. The
following snippet uses the Oracle XML Parser's DOM 2.0 XML Namespace support to retrieve additional information
regarding the attributes of each element:

for (int i=0; i < nnmgetLength(); i++){
nsAttr = (XMLAttr) nnmiten(i);

/1 Use the nethods getQualifiedNane() and get ExpandedNane()
/1 in NSNane interface to get Namespace infornation.

attrname = nsAttr. get ExpandedName();
attrgnanme = nsAttr.getQualifi edName();
attrval = nsAttr. getNodeVal ue();

System out. printl n(+ attrgname + " (" + attrnane +
)"+ " =" + attrval);

}

This kind of code is useful if the XML document you have to parse has elements with many attributes that belong to
different namespaces. For example, suppose the booklist XML document from the preceding section looked like
this:
<bookli st xm ns: osborne="http://ww.osbor ne.com
xm ns: bookgui | d="htt p://www. bookgui | d. cont
xm ns: dol | ars="http://ww.currency. org/dol | ars">
<book osbor ne:isbn="0-07-213495-X" title="Cacl e9i XM. Handbook"
author =" Chang, Scardina, and Kiritzov" bookguil d: publi sher="0Osbor ne"
doll ars: price="49.99"/>
<book oshor ne:isbn="1230-23498-2349879" title="Enperor's New M nd"
aut hor =" Roger Penrose" bookgui | d: publi sher="0Oxford Publi shing
Conpany"
doll ars: price="15.99"/>
</ bookl i st>

The generated output with namespaces would look like this:

xm ns:osborne(http://ww. w3. or g/ 2000/ xm nl s/: osbor ne) =ht t p: // ww. osborne. com
xm ns: bookgui Id(http://ww. w3. org/ 2000/ xm ns/ : bookgui | d) =htt p://ww. bookgui | d. com
xm ns:dol lars(http://ww. w3. or g/ 2000/ xm ns/ :dol | ar s=http://www currency. org/dol | ars
book:

osborne:isbn(http://ww. osborne. comisbn) = 0-07-213495-X

title(title) = Oacle9i XM Handbook

aut hor (aut hor) = Chang, Scardina, and Kiritzov

The DOM Level 2 Traversal and Range functionality includes methods that create Iterators and TreeWalkers to
traverse a node and its children in document order. Objects using a TreeWalker to navigate a document tree or
subtree use the view of the document defined by their whatToShow flags and filters. An example of such stub code
would be the following:

/'l This filter accepts everything

NodeFilter nl = new nf1();

/1 Node iterator doesn't all ow expansion of entity references

Nodel terator ni =

doc. creat eNodel t erat or (el ens[0], NodeFi | ter. SHON ALL, n1, f al se);

/'l Move forward

XM_.Node nn =(XM_Node) ni.nextNode();

while (nn !'= null){
System out. printl n(nn. get NodeNarmre() + " " + nn. getNodeVal ue());
nn = (XM_Node) ni . next Node() ;

}

/1 Move backwar d

nn = (XM_.Node)ni . previ ousNode() ;

while (nn !'= null){
System out . printl n(nn. get NodeNarre() + " " + nn. getNodeVal ue());
nn = (XM_Node) ni . pr evi ousNode();

}

/1l Node iterator allows expansion of entity references

ni = doc. createNodel terator (el ens[0], NodeFi It er. SHOVN ALL, n1, true);

/1 Move forward

nn =(XMLNode) ni .nextNode();

while (nn !'= null){
System out . pri ntl n(nn. get NodeNarmre() +
nn = (XM_LNode) ni . next Node() ;

}

/1 Move backwar d

nn = (XM.Node)ni . previ ousNode() ;

while (nn !'= null){
System out. printl n(nn. get NodeNane() +
nn = (XM_Node) ni . previ ousNode();

}

+ nn. get NodeVal ue());

+ nn. get NodeVal ue()) ;

/1 This filter doesn't accept expansion of entity references
NodeFil ter n2 = new nf 2();

/'l Node iterator allows expansion of entity references

ni = doc. createNodel terator (el ens[0], NodeFi It er. SHON ALL, n2, t rue);

/1 Move forward

nn =(XMLNode) ni .nextNode();

while (nn !'= null){
System out . printl n(nn. get NodeNane() +
nn = (XM_Node) ni . next Node() ;

}

/!l Move backwar d

nn = (XM.Node)ni . previ ousNode() ;

while (nn !'= null){

+ nn. get NodeVal ue()) ;

System out. printl n(nn. get NodeNarre() + " " + nn. getNodeVal ue());
nn = (XM_Node) ni . previ ousNode();
}
/'l After detaching, all node iterator nethods throw an exception
ni.detach();
try {
nn = (XM_LNode) ni . next Node() ;
}

cat ch(DOVException e) {
System out . printl n(e. getMessage());

}
try {
nn = (XM_Node) ni . previ ousNode();
}
cat ch(DOVException e){
System out . printl n(e. getMessage());
}
/1 TreeWal ker allows expansion of entity references
TreeWal ker tw =
doc. creat eTr eeVal ker (el erms[0] , NodeFil ter. SHOW ALL, n1, true);
nn = (XM.Node)t w. get Root () ;
/! Traverse in document order
while (nn !'= null) {
System out. printl n(nn. get NodeNane() +
nn = (XM_.Node) t w next Node() ;

}

+ nn. get NodeVal ue()) ;

tw = doc. createTreeWal ker(el ems[0], NodeFi | t er. SHOWALL, n1, true);
nn = (XM_Node) tw getRoot();
/1l Traverse the depth |eft
while (nn !'= null){
System out. printl n(nn. get NodeNane() +
nn = (XMNode)tw firstChild();

}

+ nn. get NodeVal ue()) ;

tw = doc. createTreeVal ker(el ens[0], NodeFi | ter. SHOWALL, n2, true);
nn = (XM.Node)t w. get Root () ;
/] Traverse in document order
while (nn !'= null){
System out . pri ntl n(nn. get NodeNarmre() +
nn = (XM_LNode) t w. next Node() ;
}
tw = doc. createTreeWal ker(el ens[0], NodeFi | ter. SHOWALL, n2, true);
nn = (XM.Node) tw getRoot();
/1 Traverse the depth right
while (nn !'= null) {
System out . printl n(nn. get NodeNarre() + " " + nn. getNodeVal ue());
nn = (XM_Node)tw | ast Chil d();

}

+ nn. get NodeVal ue());

class nfl inplements NodeFilter {
public short accept Node(Node node) {
return Fl LTER _ACCEFT,

}

}
class nf2 inplements NodeFilter {

public short accept Node(Node node) {
short type = node. get NodeType();

if ((type == Node. ELEMENT_NODE) || (type == Node.ATTR BUTE_NCDE))
return FlI LTER ACCEPT,

if ((type == Node. ENTI TY_REFERENCE_NOCE))

return FI LTER REJECT,;

return FlI LTER_SKI P;

}
}

DOM Level 3

As in Level 2, the DOM Level 3 W3C Working Draft consists of DOM Level 3 modules of Core, Load and Save,
Validation, Events, and XPath, which provide further functionality identified by DOM users as useful and necessary
for their applications. References to these can be found in the Appendix.

A DOM application can use the hasFeature() method of the DOMImplementation object to determine whether the
module is supported. A DOMImplementation object can be retrieved from a Document using the
getimplementation() method. Examples of these feature strings for their respective modules are XML, ,HTML,
Events, and Validation.

The basis of the DOM, as previously stated, is a tree consisting of Node objects. Different kinds of Nodes are used
to represent an XML document: Document,Element,Attr, Text,DocumentFragment,DocumentType,
Processinglnstruction,Comment,CDATASection,EntityReference, and Notation. The DOM also defines some
other types that represent a list of nodes—NodeList and NamedNodeMap—and introduces a DOMString type,
which is a string of UTF-16 encoded characters. Finally, DOM introduces an exception type, DOMException, which
is raised by the various DOM interfaces if an erroneous operation is performed or if some other error occurred during
execution.

Table 2-1 and Table 2-2 list the DOM types and the corresponding types supported by the Oracle XML parsers for
Java, PL/SQL, C and C++.

Table 2-1: DOM Types with Corresponding Javaand PL/SQL Oracle Types

DOM Type Java PL/SQL
Node XMLNode DOMNode
Document XMLDocument DOMDocument
Element XMLElement DOMElement
Attr XMLAttr DOMALttr
Text XMLText DOMText
DocumentFragment XMLDocumentFragment DOMDocumentFragment
Processinglnstruction XMLPI DOMPI
DocumentType DTD XMLDTD
EntityReference XMLEntityReference DOMEntityReference
Comment XMLComment DOMComment
CDATASection XMLCDATA DOMCDataSection
NodelList XMLNodeList DOMNodeL.ist
NamedNodeMap N/A (private class) DOMNamedNodeMap
Notation XMLNotation DOMNotation
DOMString java.lang.String VARCHAR?2
DOMEXxception XMLDOMEXxception EXCEPTION

Table 2-2: DOM Types with Corresponding C and C++ Oracle Types
DOM Type C C++
Node xminode NodeRef
Document xmldocnode DocumentRef
Element xmlelemnode ElementRef
Attr xmlattrnode AttrRef
Text xmltextnode TextRef
DocumentFragment xmlfragnode DocumentFragmentRef
ProcessinglInstruction xmlpinode ProcessingInstructionRef
DocumentType xmldtdnode DocumentTypeRef
EntityReference xmlentrefnode EntityReferenceRef
Comment xmlcommentnode CommentRef
CDATASection xmlcdatanode CDATASectionRef
NodeList xminodelist NodeListRef
NamedNodeMap xmlnamedmap NamedNode MapRef
Notation xminotenode NotationRef
DOMString oratext * DOMString
DOMEXxception N/A N/A

Oracle DOM APIs in C

Because the DOM is an object-oriented specification and the C language is not object oriented, some changes had
to be made. In particular, the C function namespace is flat, so the names of DOM methods that are the same in

several different classes have been changed to make them unique, as detailed in Table 2-3.

Table 2-3: Oracle DOM APIs in C

DOM Name C Name

Attr::getName, ... XmIDomGetAttrName, ...
CharacterData::getData, ... XmIDomGetCharData, ...
DocumentType::getName, ... XmIDomGetDocTypeName, ...
Entity::getPublicld, ... XmIDomGetEntityPublicID, ...
NamedNodeMap::item XmIDomGetChildNode
NamedNodeMap::getl ength XmIDomGetNodeMapLength
NodelList::item XmIDomGetChildNode
NodelList::getLength XmIDomGetNodeMapLength
Notation::getPublicld, ... XmIDomGetNotationPublD, ...

The documentation that is included with the C XDK details each of these functions and can also be seen in the
parser header file, xml.h.

[« rreviovs [e |

[« revious fnexr]
Accessing XML with SAX

Simple API for XML (SAX) is a standard interface for event-based XML parsing. This means that notification of
certain events and data encountered during the parsing of the XML document can be reported by callback functions
to the application program. On notification of these events, the application program then must deal with them. For
example, the application program can have data structures using callback event handlers. Finally, the types of
information and notifications passed back by these callback functions are in the vein of such things as the start and
end of elements and information related to an element’s content, such as CDATA, processing instructions, and
subelements.

SAX; initially developed by David Megginson, has become a W3C XML standard. One advantage of using SAX
parsing over using the DOM is that an in-memory representation of the parse structure doesn’t have to be built, thus
saving memory and resulting in better performance for certain types of operations, such as searching. On the other
hand, modifying, updating, and performing other structural operations may be made more efficient by using a DOM
parser.

SAX Level 1 and Level 2

The SAX API consists of a set of interfaces and classes. Some of these interfaces are implemented by a SAX
parser (such as the Oracle XML Parser for Java). Others need to be implemented/ extended by your application. In
addition, with SAX Level 2, the interfaces and methods now have hamespace support, along with other functionality
such as filters. Consequently, because of the namespace support, some of the interfaces were deprecated and
replaced with new ones.

SAX interfaces and classes are classified into five groups:
m Interfaces implemented by the parser
m Interfaces implemented by the application
m Standard SAX classes
= Optional Java-specific helper classes inthe org.xml.sax.helpers package
m Javademonstration classes in the nul package

However, as an application writer, you only need to focus on at most two of the interfaces, as described in Table 2-
4.

Table 2-4: Interfaces Implemented by Applications

SAX 1.0 Interface SAX 2.0 Interface Description

DocumentHandler ContentHandler Receives natifications from
parser

ErrorHandler ErrorHandler Optional interface for special

error handling

DTDHandler DTDHandler Optional interface needed to
work with notations and
unparsed (binary) entities

EntityResolver EntityResolver Optional interface needed to do
redirection of URIs in
documents

In addition to the application interfaces, most SAX parsers, including the Oracle XML Parser for Java, implement
helper classes that provide static methods that are useful in integrating SAX parsers. These helper classes are
described in Table 2-5.

Table 2-5: Oracle SAX Helper Classes

SAX 1.0 Interface

ParserFactory

Attribute Listimpl

SAX 2.0 Interface
XMLReaderFactory

Atrributelmpl

Description

Class to support loading SAX
parsers dynamically

Convenience class to make a

persistent copy of an
AttributeList

Convenience class to make a
persistent snapshot of a
Locator's values at a specific
point in the parse

Locatorimpl Locatorimpl

Convenience class to add
namespace support

N/A NamespaceSupport

N/A XMLFilerimpl Base class to be subclassed
when applications need to

modify the event stream

Base class with default
implementations of all four
SAX2 handler classes

HandlerBase DefaultHandler

The following code sample demonstrates a simple use of the parser and SAX API. The XML file given to the
application is parsed and prints some information about the contents of this file. Sample code of various useful
interfaces is also provided.

i nport org.xm.sax.*;

i nport java.io.*;

i nport java.net.*;

i nport oracle.xnl.parser.v2.*;

public class SAXSanple extends Defaul t Handl er {
/! Store the | ocator
Locator locator;

static public void main(String[] argv) {
try {

if (argv.length !'=1) {

/1 Must pass in the name of the XML file.
Systemerr.println("Usage: SAXSanple filename");
Systemexit(1);

}

/1l Create a new handler for the parser

SAXSanpl e sanpl e = new SAXSanpl e() ;

/1 Get an instance of the parser
Parser parser = new SAXParser();

/1 Set Handl ers in the parser
parser.set Document Handl er (sanpl e);
parser.set EntityResol ver (sanpl €);
parser.set DIDHandl er (sanpl e) ;
parser.set Error Handl er(sanpl e) ;

/'l Convert file to URL and parse
try {
parser. parse(fil eToURL(new File(argv[0])).toString());
}
}

}
FEEEEEEEE b bbb i rrr o

/] Sanple inmplementati on of Content Handler interface.

FHEEEEEE bbb bbb bbb i rr e rr i rr

public voi d set Docunent Locator (Locator |locator) {
System out . printl n("SetDocunent Locator:");
this.locator = |ocator;

}

public void startDocunent () {
System out. println("StartDocunent");

}

public voi d endDocunent () throws SAXException {
System out . printl n(" EndDocunent ") ;
}
public void startEl enent(String nanespaceUR, String |ocal Nare,
String gNane, AttributeList atts)
t hrows SAXException {
Systemout.println("StartElenment:"+nane);
for (int i=0;i<atts.getLength();i++) {
String aname = atts. get Name(i);
String type = atts. getType(i);
String value = atts. getValue(i);
Systemout.println(" "+ananme+" (" +type+") " +"'="+val ue);
}
}
public void endH enment (String namespaceURI, String | ocal Name, String gName)
t hrows SAXException {
Systemout.printl n("EndEl emrent: " +namne) ;

}

public void characters(char[] cbuf, int start, int len) {
Systemout.print("Characters:");
Systemout.println(new String(cbuf, start,len));

}

public void ignorabl eWitespace(char[] cbuf, int start, int len) {
Systemout.println("Ignorabl eWhiteSpace");
}
public void processinglnstruction(String target, String data)
t hrows SAXException {
Systemout. println("Processinglnstruction:"+target+" "+data);

}

NN NN NNy
/1 Sanple inplementation of the EntityResol ver interface.
NN NN NN NNy

public InputSource resolveEntity (String publicld, String systemnid)
t hrows SAXException {
Systemout.println("Resol veEntity:"+publicld+" "+systemd);
Systemout.println("Locator: "+l ocator.getPublicld()+" "+
| ocat or. get System d() +
" "+| ocator. get Li neNumber () +* "
+l ocator. get Col utmNunber());
return null;

}

NN NN NN NN NNy
/1 Sanpl e inplenmentation of the DTDHandl er interface.
NN NN NNy

public void notationDecl (String nanme, String publicld,
String system d) {

Systemout.println("NotationDecl:"+name+" "+publicld+" "+systemd);

}

public void unparsedEntityDecl (String nane, String publicld,
String systemd, String notationNane) {
Systemout.printl n("UnparsedEntityDecl:"+name + " "+publicld+" "+
system d+" "+not ati onNane) ;

Using SAX APIs

Quite often, applications that require only SAX (Level 1 and Level 2) support do not want to be burdened with a
parser that always builds a full-blown DOM tree in memory. The Oracle XML SAX parser's high-performance, event-
based, run-time engine addresses this requirement. Using the SAX parser, applications can leverage the full power
of the SAX model to parse extremely large documents without incurring prohibitive memory costs.

The following code demonstrates how the SAX APIs can be used to extract useful information from an XML
document:

/1l This exanple denonstrates a sinple use of the SAXParser.
/1 An XML file is parsed and sone information is printed out.
i nport org.xm.sax. *;

i nport java.io.*;

i nport java.net.*;

i nport oracle.xm.parser.v2.*;

public class SAXHandl er extends Def aul t Handl er {
public static void mai n(String[] argv) {

try {

/1 Get an instance of the parser

Parser parser = new SAXParser();

/'l Create a SAX event handl er and register it with the parser
SAXHandl er handl er = new SAXHandl er ();
parser.set Content Handl er (handl er);

/1 Convert file to I nputSource and parse
| nput Sour ce xm doc = new | nput Sour ce(new Fi |l el nput Strean(argv[0]));
parser . par se(xm doc) ;
}
catch (Exception e) {
Systemout.println(e.toString());
}
}
/1l Sanple inmplementation of Document Handler interface.
public void startElement(String name, Attributes atts)
t hrows SAXException {
Systemout.println("StartH enent:"+nane);
for (int i=0;i<atts.getlLength();i++) {
String aname = atts. get Name(i);
String type = atts. get Type(i);
String value = atts. getVal ue(i);
Systemout. println(" "+aname+" (" +type+")"+"="+val ue);
}
}

public void characters(char[] cbuf, int start, int len) {
Systemout.print("Characters:");
Systemout.println(new String(cbuf,start,len));
}
}

To use the Oracle XML parser's SAX support, you need to use the SAXParser class to parse your XML document.
The first thing to do, therefore, is to get an instance of this class:

Par ser parser = new SAXParser();

You then need to register your SAX event handler with the parser, so that it knows what methods to invoke when a
particular event occurs. Because not all events may be of interest to you, make sure the handler you register
extends the org.xml.sax.DefaultHandler class. This class provides some default behavior for handling events
(typically these do nothing). You can then override the methods for those events of interest to you. In the preceding
example, the assumption is that the only events of interest are a subset of those specified by the
org.xml.sax.ContentHandler interface, namely, startElement and characters. Arguably, these are the most
important SAX events generated because XML documents typically consist of markup and text. This handler can be
registered with SAXParser with a simple API call:

par ser. set Content Handl er (handl er) ;

ThestartElement event is triggered every time a new element is encountered within the XML document by
SAXParser. When this event occurs, you can print the element name and its attributes:

public void startEl ement (String nanmespaceURlI, String | ocal Nanme, String
gNane, Attribute
throws SAXException {

}

Thecharacters event is triggered every time unmarked-up text is encountered by SAXParser. This text is often the
“value” of an element and can be retrieved by listening for this event:

public void characters(char[] cbuf, int start, int len) {

}

Once the handler has been registered, all that remains is to parse an XML document using SAXParser:
par ser. parse(xm doc) ;

The input XML document could contain a list of book data, such as the following:

<bookl i st >
<book i sbn="0-07-213495-X">
<title>Cacle9i XM. Handbook</title>
<aut hor >Chang, Scardi na and Kiritzov</aut hor>
<publ i sher >Gsbor ne</ publ i sher >
<price>49.99</ price>
</ book>

<book i sbn="1230-23498-2349879">
<title>Emeror's New Mnd</title>
<aut hor >Roger Penr ose</aut hor >
<publ i sher >«f ord Publ i shi ng Conmpany</publi sher>
<price>15.99</price>

</ book>

</bookl i st>

The following output would be generated:

Start B enment : bookl i st
Start H enent : book
i sbn(CDATA)= 0-07-213495- X
StartH enent:title
Characters: Oracle9i XM Handbook
Start H enent : aut hor
Characters: Chang, Scardina and Kiritzov
Start B enent : publi sher
Char acters: Osborne
Start B enent: pri ce
Char act ers: 49.99
Start H enent : book
i sbn(CDATA) =1230- 23498- 2349879

StartB ement:title

Char act ers: Enperor's New M nd

Start Bl ement : aut hor

Char act er s: Roger Penrose

Start H ement : publi sher

Char act ers: Oxford Publ i shi ng Conpany
Start B enent: pri ce

Char act ers: 15.99

Implementation of SAX Level 2 comes mainly in the form of support of XML namespaces, and querying or setting
features or properties in the parser. With namespace support, element and attribute hames may now return an
optional namespace URI followed by a local name, e.g., <foo:bar xmIns:foo="http://www.oracle.com/” /> ,where
http://www.oracle.com/ is the namespace URI and bar is the local name. In addition, the qualified name (or
gName),foo:bar, may also be returned.Without namespace support, element and attribute names simply return a
local name. The SAX Level 2 interfaces affected by namespace support are XMLReader,Attributes, and
ContentHandler. An example of SAX 2 namespace support, followed by code for the startElement and
endElement callback methods in the ContentHandler interface, might look like this:

/1 This exanple denonstrates how to use SAX Level 2 Namespace
/'l support, followed by how to use the call back
/1 methods startH enment and endH enent.

i nport java.io.*;

i nport java.net.URL;

i nport java. net. Mal f or mredURLExcept i on;
i nport org. xm.sax. *;

i mport org.xnm.sax. hel pers. *;

i nport oracle.xm . parser.v2. SAXPar ser;

public class SAX2Nanespace {
static public void main(String[] args) {
String fil eNaneg;
/1Get the file nane
fileName = args[O];
try {
/'l Create handl ers for the parser
/'l For all the other interfaces use the default provided by
/1 Handl er base
Def aul t Handl er defHandl er = new XM.Def aul t Handl er () ;
SAXPar ser parser = new SAXParser();
parser.set Content Handl er (def Handl er) ;
parser.set Error Handl er (def Handl er) ;
parser.set EntityResol ver (def Handl er) ;
parser.set DTDHandl er (def Handl er) ;

try {
par ser. parse(createURL(fil eNane));
}
}
}
static URL createURL(String fileNane) {
URL url = null;
try {
url = new URL(fil eNane);
} catch (Ml formedWRLException ex) {
try {

File f = new Fil e(fil eNane);
url = f.toURL();

}

catch (Ml f or mredURLException e) {
Systemout.println("Cannot create url for: " + fil eNane);
Systemexit(0);

}

}

return url;

http://www.oracle.com/
http://www.oracle.com/

}

}
class XM.Def aul t Handl er ext ends Def aul t Handl er {

public void XM_Def aul t Handl er () {

}

public void startEl ement(String uri, String | ocal Nane,

String gName, Attributes atts)
t hrows SAXException {

Systemout.println("ELEMENT Qualified Nane:" + gName);
Systemout . println("ELEMENT Local Nane :" + local Nane) ;
Systemout.printl n("ELEMENT Nanespace Mo+ ouri);

for (int i=0; i<atts.getLength(); i++ {
gNanme = atts.get QName(i);

| ocal Name = atts.getLocal Name(i);

uri = atts.get URI(i);

Systemout. println(" ATTR BUTE Qual ifi ed Nane "+ gNane) ;
Systemout. printin(" ATTR BUTE Local Nane ;" + | ocal Nan®) ;
Systemout. println(" ATTR BUTE Nanmespace Mo+ ouri);

/1l You can get the type and val ue of the attributes either
/'l by index or by the Qualified Name.

String type = atts. get Type(gNane);
String value = atts. get Val ue(gNane) ;

Systemout. println(" ATTR BUTE Type "+ type);
Systemout. printlin(" ATTR BUTE Val ue "+ val ue);
Systemout. printin();
}
}

public void endEl enent (String uri, String | ocal Nane,

String gName) throws SAXException {
Systemout.println("ELEMENT Qualified Name:" + gNane);
Systemout.println("ELEMENT Local Nane :" + local Nan®e) ;
Systemout.printl n("ELEMENT Nanespace "o+ ouri);

}
}

For SAX Level 2, the additional parameters being passed in are the namespace URI, the local name, and the
gName. Other SAX Level 2 enhancements include the querying and setting of features and properties in the parser.
For example, getter/setter methods such as getFeature,setFeature, getProperty, setProperty, are available
supporting namespaces as demonstrated in the following listing:

void process(String fil enane) throws SAXException, | OException{
URL url = createURL(filenane);

/1l Validating, Nanmespace = true, NanmespacePrefix = true

parser.set Feature("http://xm . org/sax/features/validation", true);
parser. set Feature("http://xm . or g/ sax/ feat ur es/ namespaces”, true);
parser.set Feature("http://xm . org/ sax/ feat ures/ namespace- prefi x", true);

try {
par ser. parse(url.toString());

}

catch (XM.ParseException e) {
System out. println();
Systemout. println(e);

}

/1 Non-validating, NamespacePrefix = false
parser.set Feature("http://xm . org/sax/features/validation", true);

parser.set Feature("http://xm . org/ sax/feat ures/ namespace- prefi x", true);

try {
parser. parse(url.toString());

}

catch (XM.ParseException e) {
Systemout.println();
System out. println(e);
}
}

For this code example, note that you can control namespace support in SAX Level 2 processing. In default
processing,namespace-prefix is false, meaning that gNames are optionally reported and namespace declarations
(xmlIns attributes) are not reported. In our example, however, the code stub sets validation,namespaces, and
namespace-prefix to be true, which when given

<foo: bar xm ns: foo="http://ww. oracle.com " fool="bar1l" foo:stock="wayout.conl/>,

an element will have the namespace URI of http://www.oracle.com/, a local name of bar, and a gName of
foo:bar; one attribute will have no namespace URI, no local name, and a gqName of xmIns:foo; another attribute
will have no namespace URI, a local name, and a gName of fool; and the last attribute will have the namespace
URIhttp://www.oracle.com/ and a local name of stock.

Oracle SAXAPIs in C

To use the Oracle SAX APIs, a set of callback functions is passed to xmlinit(). The parser then invokes these
functions as the matching parts of a document are encountered. Compare this to the DOM, in which the document
is parsed and a node tree is constructed in memory, which can then be queried and modified through the DOM API.
SAX functions are invoked as the document is parsed. Each SAX function returns a (sword) error code. If the code
is nonzero, an error is indicated and parsing stops immediately.

The SAX callback structure (xmlsaxcb) is defined as follows:

struct xm saxch {
sword (*startDocunent) (void *ctx);
sword (*endDocunent)(void *ctx);
sword (*startEl ement)(void *ctx, const oratext *nane,
const struct xm nodes *attrs);
sword (*endElenent) (void *ctx, const oratext *nane);
sword (*characters)(void *ctx, const oratext *ch, size_t len);
sword (*ignorableWhitespace)(void *ctx, const oratext *ch,
size_t len);
sword (*processinglnstruction)(void *ctx, const oratext *target,
const oratext *data);
sword (*notationDecl)(void *ctx, const oratext *nane,
const oratext *publicld,
const oratext *systemd);
sword (*unparsedEntityDecl)(void *ctx, const oratext *nane,
const oratext *publidld,
const oratext *systemd,
const oratext *notati onNane);
sword (*nsStartH enment) (void *ctx, const oratext *qgnane,
const oratext *local,
const oratext *nsp,
const struct xm nodes *attrs);

}

Any or all callback functions may be specified; none are required. An optional context pointer may be provided, and it
will be passed to each callback function. Its use is entirely up to the user. The callback functions are described in
detail in Table 2-6.

Table 2-6: SAX Callback Functions

http://www.oracle.com/
http://www.oracle.com/

Callback Function Description

startDocument Invoked immediately before the parse begins.

endDocument Invoked immediately after a successful parse
ends.

startElement Invoked when an element start-tag is found. If the

namespace version of this callback is also
supplied, it is called instead.

endElement Invoked when an element end-tag is found.
characters Invoked for each CDATA or #PCDATA.
ignorableWhitespace Invoked for each run of ignorable white space,

unless all white space is being retained (in which
case characters is invoked).

processinglnstruction Invoked for each processing instruction.

notationDecl Invoked for each NOTATION declaration in the
DTD.

unparsedEntityDecl Invoked for each unparsed entity (those with

NDATA defined).

nsStartElement Invoked when a nhamespace qualified start-tag is
found returning the namespace, local part, etc.

The following program fragments show how to declare, register, and use the SAX callbacks:

/* decl are SAX cal | back functions */
sword startdocunent (void *ctx);
swor d enddocunent(void *ctx);
sword startel enent (void *ctx, const oratext *nane,
const xnml nodes *attrs);
sword endel enent (voi d *ctx, const oratext *nane);
sword characters(void *ctx, const oratext *ch, size_t len);
sword whi tespace(void *ctx, const oratext *ch, size_t len);
sword pi (void *ctx, const oratext *target,
const oratext *data);
sword notation(void *ctx, const oratext *nane,
const oratext *publicld,
const oratext *systenid);

sword entity(void *ctx, const oratext *name,

const oratext *publidld,

const oratext *system d,

const oratext *notationNane);
/* decl are SAX cal | back context */
t ypedef struct saxcontext {

uword depth; /* nested elenent |evel, for indenting */

} sax_context;

/* declare SAX cal | back structure */

xm saxch sax_cal | back = {
st artdocunent, enddocunent, startelenent, endel ement,
characters, whitespace, pi, notation, entity

1

/* declare SAX context and initialize */

sax_context saxctx ={ 0}; /* depth =0 */

/* initialize parser specifying SAX cal | backs */

xminit(&code, NULL, NULL, NULL, NULL,

&sax_cal | back, (void *) &saxctx, NULL, NULL);

[* ----- SAX CALLBACKS ----- */

sword startdocunent (void *context) {
put s(" St art Docunent ") ;
return 0; /* success */

}

sword enddocunent(void *context) {
put s(" EndDocunent ") ;
return 0; /* success */

}

sword startel enent (void *context, const oratext *name,
const xm nodes *attrs) {
sax_cont ext *saxctx = (sax_context *) context;
i ndent (saxct x- >dept h) ;
printf("<%", nane);
if (attrs) {
for (i =0; i < nunmAttributes(attrs); i++) {
attr = getAttributel ndex(attrs, i);
printf(" %=\"%\"", getAttrName(attr), getAttrValue(attr));
}
}
put s(">");
saxct x- >dept h++;
return 0; /* success */

}

swor d endel enent (void *context, const oratext *nane) ({
sax_cont ext *saxctx = (sax_context *) context;

i ndent (- -saxct x->dept h) ;
printf("</%>\n", nane);
return 0; /* success */

}

sword characters(void *context, const oratext *ch, size_ t len)
sax_cont ext *saxctx = (sax_context *) context;

i ndent (saxct x- >dept h) ;

putchar('""');
print_string((oratext *) ch, (sword) |en);
put s("\"");
return 0; /* success */
}

sword whi tespace(void *context, const oratext *ch, size_ t len)

{

sax_cont ext *saxctx = (sax_context *) context;

i ndent (saxct x- >dept h) ;

putchar('\'");

print_string((oratext *) ch, (sword) len);
puts(""");

return 0; /* success */

}

sword pi(void *context, const oratext *target,
const oratext *data) {
sax_cont ext *saxctx = (sax_context *) context;

i ndent (saxct x- >dept h) ;

fputs("PI", stdout);

if (target)

printf(" target=\"9%\"", target);

if (data)

printf (" data=\"%s\"", data);
putchar('\n");

return 0; /* success */

}

sword notation(void *context, const oratext *nane,
const oratext *publicld,
const oratext *systenid) {
sax_cont ext *saxctx = (sax_context *) context;

i ndent (saxct x- >dept h) ;
printf("NOTATION '9%' ", nane);
if (publicld)

printf (" PUB: %", publicld);
if (systemd)

printf(" SYS %", system d);
putchar('\n");

return 0; /* success */

}

sword entity(void *context, const oratext *nane,
const oratext *publidld,
const oratext *system d,
const oratext *notationName) {
sax_cont ext *saxctx = (sax_context *) context;

i ndent (saxct x- >dept h) ;
printf("ENTITY '%'", nane);

if (publidld)

printf(" PUB: %", publidld);

if (systenld)

printf(" SYS %", system d);

if (notati onNane)

printf(" NAME: %", notati onNane);
putchar('\n");

return 0; /* success */

}

The following is a sample XML document that includes an inline DTD:

<?xm version="1.0"7?>
<I DOCTYPE PLAY [

<! ELEMENT t op (second*) >

<! ELEMENT second (third*)>

< ELEMENT third (#PCDATA)*>

<! NOTATI CN not el SYSTEM "f 0o0. exe" >

<! NOTATI ON not e2 PUBLI C "bar" "bar.ent">

<IENTI TY ent SYSTEM "http://ww w3.org/" NDATA n>
1>
<?dummy this is a sanpl e processing instructi on?>
<top>

<second>

<third>third | evel </ third>

</ second>
</top>

This is the resulting output from the preceding sample program:

Start Docunent

NOTATION 'notel' SYS:foo.exe

NOTATION 'not e2' PUB: bar SYS:bar. ent

ENTITY "ent' SYS:http://ww. w3. org/ NAME n

Pl target=dummy data=this is a sanple processing instruction

<top>
"\n
<second>
“\n .
<third>
"third | evel "
</t hird>
“\n
</second>
\n
</t op>
EndDocunent

[« erevious [e |

[« revious fnexr]
Accessing XML with Java Binding

The JAXB APIs create Java source files from an XML Schema to assist in programmatically creating valid document insti
useful when you want an application to send an XML message to another application according to an agreed-upon XML ¢
to construct an XML document. You can construct, optionally validate, and print XML documents that comply with the inp
applications using the generated classes. The JAXB APIs work in conjunction with the Oracle XML Parser for Java, whicl
passes the parsed XML Schema to the JAXB compiler.

The JAXB APIs then query the XML Schema for all the elements. A Java class is generated for each of these elements.
set the attributes and add child nodes by the corresponding content model. The Java class corresponding to the root eler
and print the constructed XML document. The following subsections use an example to show how the JAXB APIs can be
Schema and generate classes for the XML Schema’s elements. The example then shows how to use the methods of the
programmatically construct a valid XML document.

The Input XML Schema

The following XML Schema for book data, bookcatalog.xsd, is used as the input to the JAXB Compiler. Here, the schen
document root is BOOKCATALOG. BOOKCATALOG consists of one or more BOOKs. Each BOOK contains a required |
identifier, as well as several optional attributes and child elements, such as TITLE for the book title, AUTHORNAME for tt
for the publisher, and so on. Optional attributes and children are followed by a ? in the element definition.

<xsd: el ement name="PR CE" type="xsd:decimal"/>
</ xsd: sequence>
</ xsd: conpl exType>
</xsd: schema>

Generating XML Classes

The following code sample processes an XML Schema and generates the corresponding classes for elements in the DTL
DTD file along with the name of the root element. The JAXB APIs can also parse an XML document and use the DTD de
the JAXB compiler on the preceding XML Schema creates Java classes for each element (BOOKCATALOG, BOOK, TIT
application can then use the methods defined on these classes to create a valid XML document containing book data. Th
JAXB compiler that can generate these classes with the following command line:

java -cl asspath %CLASSPATH% or acl e. xnl . j axb. or aj axb - schena bookcat al og. xsd
-tar get Pkg generated

Binding to an XML Instance

The following Java code shows how generated methods might be used. Here, two BOOK records are created: book1 anc
are enforced by adding them as parameters to the constructor. In this case, ISBN is a required attribute for the BOOK ele
are also created (titlel, authornamel, and so on). If an element has an enumerated attribute, a static constant is defined
enumeration. To build an XML document tree, the various data elements are grouped by assignhing them to each row eler
element is then added as a node to the document root element BOOKCATALOG. In this example, classes generated are

i mport javax. xml . bi nd. JAXBCont ext ;
i nport javax.xmnl .bind. Marshall er;
i nport java.util.List;

public class O eat eBooksDenp {
public static void main (String args[]) {
try {
/'l Instantiate the object factory
Cr eat eBooks. Obj ect Factory obj Factory = new Creat eBooks. (hj ect Factory();

/1 New Book Catal og
Cr eat eBooks. BOOKCATALOG bookCat al ogue = obj Fact ory. creat eBOKCATALOY) ;

/1 New book bookl

Cr eat eBooks. BOK bookl1l = obj Factory. createBOCK() ;
bookl. set | SBN("7654") ;

bookl. set TITLE(" The Adventures of Don Quixote");

bookl. set AUTHORNAME(" M guel Cervantes");

bookl. set PUBLI SHER(" Oracl e Press");

bookl. set PUBLI SHYEAR(" 2000") ;

bookl. set PR CE(new j ava. mat h. Bi gDeci mal ("1.0"));

/'l O eate new book book2

Cr eat eBooks. BOK book2 = obj Fact ory. creat eBOCK() ;
book2. set | SBN("7788") ;

book2. set TITLE(" The Iliad");

book2. set AUTHORNAME(" Honer ") ;

book2. set PUBLI SHER(" Or acl e Press");

book2. set PUBLI SHYEAR(" 1000") ;

book2. set PR CE(new j ava. mat h. Bi gDeci mal ("2.0"));

/1l Getting the list
Li st bookList = bookCatal ogue. get BOOK() ;

/1l Setting a book item
bookLi st. add(book1);
bookLi st. add(book?2);

/1 Gt the JAXB Cont ext
JAXBContext jc = JAXBContext.new nstance(" Creat eBooks");

/1 Print to System out

Mar shal ler m = jc.createMarshal l er();

m set Property(Marshal | er. JAXB_FORMATTED QUTPUT, new Bool ean(true));
m mar shal (bookCat al ogue, System out);

System out.println();

System out.println();

}

catch (Exception e) {

e.printStackTrace();

}

XML Document Created by Java Application

The input for the preceding Java application can be received from various sources, such as a web form, SAX parser, or J
Java application creates an XML document that can then be transformed or stored in the database. The XML document ¢

<?xm version="1.0" encodi ng="UTF-8"?>
<BOOKCATALOG xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" xsi: noNamespaceSchenalLo
<BOK>

<TI TLE>The Adventures of Don Qui xot e</TI TLE>
<AUTHORNAME>M guel Cer vant es</ AUTHORNAVE>

<| SBN>7654</ | SBN>

<PUBLI SHER>Or acl e Pr ess</ PUBLI SHER>

<PUBLI SHYEAR>2000</ PUBLI SHYEAR>

<PRI CE>50. 00</ PRI CE>

</ BOOK>
<BOCK>

<TI TLE>The |l i ad</ Tl TLE>
<AUTHORNAME>Honer </ AUTHORNANME>

<| SBN>5354</ | SB\>

<PUBLI SHER>Or acl e Pr ess</ PUBLI SHER>
<PUBL| SHYEAR>1000</ PUBLI SHYEAR>
<PRI CE>5. 00</ PR CE>

</ BOOK>
</ BOOKCATALOG>

[« erevious [e |

[« revious fnexr]
Accessing XML with StAX

Pull parsing or StAX (Streaming API for XML) is a new Java standards effort to address some of the limitations of
SAX parsing yet still maintain a streaming model. Defined under JSR-173 in the Java Community Process, XML Pull
Parsing was designed with simplicity and performance in mind.

As in SAX parsing, StAX delivers events; however, these events are less granular and can be returned as objects.
These events, listed next, are derived from XMLEvent:

Start Docunent, EndDocunent
Start H enent, EndEl enent
Char acters, CDATA Comment
Processing I nstruction
Entity Reference

A StAX parser has factories to create readers, writers, and events. They consist of the following:

javax.xm .stream XM.I nput Factory
j avax.xm .stream XM-Qut put Fact ory
javax.xm .stream XM_Event Factory

Each of these factory instances is obtained through the newlInstance() static method. Specific implementations can
be plugged into these interfaces as is done in the Oracle version.

As distinct from SAX, you don't need to register handlers for every type of event that the parser will stream to you.
Instead, once a reader in instantiated, you simply call the next() method on the reader to get the events. The
following example shows this being done on the booklist.xml file:

XM.St reanReader reader =
XM.I nput Fact ory. newl nst ance(). creat eXM_St r eamReader
(new Fi | el nput Strean("bookl ist.xm"));

whi | e(reader. hasNext ()) {

int eventType = reader. next();

if (eventType == XM.Event. START_ELEMENT &&
reader. get Local Nane() . equal s("\title")) {
reader . next ();
System out. printl n(reader. get Text());

}

}

Note that the element to be searched for could be “pulled” while the rest is ignored. This is the cursor style of pull
parsing and it provides fine-grained access to the document content.

There is a second style to StAX parsing that is more natural to Java programmers because it returns the events as
objects with get and set type methods. The following is an example of this iterator styleperforming the same task:

XM.Event Reader event Reader =
XMLl nput Fact ory. newl nst ance(). cr eat eXM_LEvent Reader
(new Fil el nput St ream"booklist.xm"));
whi | e(reader. hasNext ()) {
XM_LEvent event = reader.next();
if (event instanceof StartH enent &&
((StartEl enent) event).get Local Name() .equal s("book\title"))
{

}
}

Note that the getLocalName() method had to be called on the event to pull the title, and the getData() method to
extract the data to print it.

Systemout. printlin(((Characters)reader.next()).getData());

As you can see in these examples, it is the application, not the parser, that controls the process. This type of
parsing is excellent for filtering XML, especially when dealing in small fragments.

The StAX writer can be used for limited transformation when a single pass is all that is necessary creating a subset
or derivative XML document. However, the inability to traverse the document bidirectionally makes it a poor
replacement for a DOM parser.

Pull parsing generally can be used wherever SAX parsing can be used—and in most cases with fewer lines of code.
Pull parsing really has application in situations in which namespaces need to be supported. As in the DOM, there is
the concept of scope to namespaces, where children inherit their parent’s namespace even when it is not explicitly
declared. StAX supports retrieving this namespace information from elements, whereas SAX does not. Finally, the
ability of StAX to support multiple data or input sources easily provides a uniform programming model that can
produce more reliable XML processing in distributed environments. This reliability is due once again to the pull
model, where a single parser can poll multiple data sources or inputs and merge their contents into a single context
without the need for multiple threads. This is why StAX is the parsing method of choice for web service
specifications such as JAX-RPC(Java API for XML-based RPC).

[« Frevious Jinecr |

[« Freviovs [nexrs]

Best Practices

This chapter has demonstrated various ways to parse and programmatically access the content of XML documents.
Each method has different strengths and weaknesses, as discussed in its respective section. However, as the
following sections discuss, there are some particular features and solutions to common problems.

DTD Caching

When parsing a collection or batch of XML documents with the same DTD, performance is improved significantly if
you cache the DTD, which eliminates its being parsed over and over again. While DTD caching is not enabled
automatically, the Oracle XML Parser for Java provides the validating/nonvalidating DTD caching through the
setDoctype() function. After you set the DTD using this function, the parser will cache this DTD for further XML
parsing. This is illustrated in the following code fragment:

/] Parse the first document and set the DTD for caching

par ser. setVal i dati onMde(DOVPar ser. DTD_VALI DATI ON) ;

parser.setAttri but e(DOMPar ser. USE_DTD ONLY_FOR VALI DATI ON, Bool ean. TRUE) ;
par ser. parse("{XM._Document _URL}");

DTD dtd =parser. get Doct ype();

par ser. set Doctype(dtd);

/1 1oop of XM parsing
for(...) {
/1 XML Parsing with DTD Cached

}

Note that you also should set the following if the cached DTD object is used only for validation:
parser.setAttri bute(DOVMPar ser. USE_DTD_ONLY_FOR_VALI DATI ON, Bool ean. TRUE) ;

Otherwise, the XML parser copies the DTD object and adds it to the resultant DOM tree. While the preceding
example is for an internal DTD, the same method is used for external DTDs.

Skipping the <IDOCTYPE> Tag

A common problem when parsing an XML document that has an external DTD declaration is retrieving that DTD. In
many cases, it may not be necessary, and frequently firewalls, permissions, etc., prevent retrieving it. Fortunately,
this can be ignored in the Java parser in either of two ways. If you have write access to the document, you can add
standalone="yes” as an attribute to the DOCTYPE element. Alternatively, within the application, you can add

xm parser.set Attri bute(XM-Parser. STANDALONE, Bool ean. TRUE)

which has the same effect.

Cutting and Pasting Across Documents

Using the DOM parser is the appropriate way to modify an XML document in most cases. However, when the
modification needs to be across different documents, as you would do when cutting and pasting, the approach is not
obvious. Fortunately, this has been made easy with the DOM 3.0 adoptNode() method. As distinct from
importNode(), which simply copies the node from one document to another, adoptNode() actually removes it from
one document and inserts it into the other document, as illustrated in the following code fragment:

XM.Document docl = new XM.Document ();

XM.El ement el enent1 = (XM.El enent) docl. createEl ement ("foo");
docl. appendChil d(el enent 1) ;

XM.Document doc2 = new XM.Docurent ();

XM.El enent el enent2 = (XM.El ement) doc2.createH enent ("bar");
doc2. appendChil d(el enent 2) ;

/1 Using adopt Node()
element2 = (XM.El enent) doc1. adopt Node(el enent 2);
el enent 1. appendChi | d(el enent 2) ;

We will illustrate further parsing examples in the third part of the book when we illustrate actual applications that you
can build.

[« erevious [e |

[rrevious fuecrs]
Chapter 3: Transforming XML with XSLT and XPath

Overview

To continue the theme from the last chapter, one open XML standard that has caught tremendous traction in the
industry is the W3C Extensible Stylesheet Transformation (XSLT) specification. Many companies have built XSLT
engines and applications according to this specification, which is traditionally embodied in an XSLT processor, to be
generally invoked following the parsing and validating of the XML document.

Because XSLT is a function-based language, programmers who are used to procedure-based and object-oriented
programming languages may have difficulty picking it up. An XSLT stylesheet will include one or more templates
formatted in XML that are applied to the entire input XML document. XSLT is a feature-rich language, and version
2.0 will extend it considerably in the area of supporting XML Schema and data types. Whole books have been
written on the language, so we are not going to cover that here. Instead, we will focus on integrating the Oracle
XSLT processors into your applications.

Using an XSLT processor, you can transform an XML document into another XML document, an HTML document,
or a variety of other text formats. The processor can be invoked either programmatically (using the given APIS) or
from the command line, and takes, as input, the XML document (to be transformed) and the XSLT stylesheet that
operates on it. It performs the transformation specified by the XSLT stylesheet and generates either a result DOM
tree or a text output stream. The diagram shown in Figure 3-1 represents the architecture of the XSLT processor.

XML : Indcxin!g. DOM tree,
input numbering metadata
SAX — Transformation
X5L handler : -
input Stylesheet | Result tree |
DOM tree : =
k.
XSL
processing

Figure 3-1: The Java XSLT processor architecture

As mentioned, the XSLT processor operates on two inputs: the XML document to transform and the XSLT
stylesheet to use. It calls out to an XPath engine whenever it needs to match patterns. The XPath engine often
needs to traverse the XML DOM tree to retrieve nodes; it passes these nodes back to the XSLT processor.
Whenever the XSLT processor needs to generate a result node, it generates a special XSLT event. This event is
handled by an XSLT event handler, serving as a midtier caching agent, which waits for subsequent events that
affect the same result node. A simple example of this is when the result node to be built is an XMLElement. Multiple
XSLT events, such as one to create the element simply followed by several that depict its attributes, may be
generated by the XSLT processor. Once the XSLT event handler gets complete information about a node, it
generates an appropriate SAX event, which can then be processed by a registered SAX handler.

Currently, two output mechanisms are supported by the XSLT Processor for Java: a DOM tree and a text output
stream. Either of these mechanisms can be invoked through appropriate API calls made using the XSLProcessor
class. If the API to build a result DOM tree is invoked, a DOM tree builder is registered as the SAX event handler for
XSLT. Similarly, if the API to output to a text stream is invoked, an OutputWriter is registered as the SAX event
handler. The advantage of this architecture is that a DOM tree is not built as the result tree unless you require it. If
your XSLT application simply needs a text output (such as HTML), you can use the less memory-intensive
OutputWriter mechanism to do the processing. Remember, if your XSLT stylesheet contains xsl:output
instructions, you must use the OutputWriter mechanism for these instructions to be interpreted correctly.

[« rreviovs [exr |

[« Freviovs [nexrs]

Programmatic Invocation of the XSLT Processor

The XSLT processor exposes two Java classes that you need to use to perform an XSL transformation:
XSLProcessor and XSLStylesheet. An XSLStylesheet object holds all information about an XSLT stylesheet,
such as its templates, keys, variables, and attribute sets. This object, once constructed, can be used multiple times
to apply the same transformation to a variety of XML documents. It can also be “tweaked” periodically by setting
suitable stylesheet parameter values from the outside.

The following code demonstrates how the XSLT APIs could be used:
i mport java.util.*;

i nport java.io.*;

i nport java.net.*;

i nport org.w3c.dom *;

i nport oracle.xm.parser.v2.*;

/**

* This is a sinple exanpl e of how to use the XSL processing
* capabilities of the Oracle XM. Parser V2.0. An input XM document
* is transformed using a given input styl esheet
*/
public class XSLExanpl e {
public static void main (String args[]) throws Exception {
DOVParser parser;
XM.Docurment xml doc, xsl doc, out;
Fil el nput Stream xml stream xsl stream
try {
/'l Oeate an instance of the DOVParser
parser = new DQVParser () ;
par ser . set PreserveWi t espace(true);

/1 parse input XM. file

xm stream = new Fil el nput Stream(args[0]);
par ser. parse(xm strean);

xm doc = parser. getDocument () ;

/1 parse input XSL file

xsl stream = new Fi |l el nput Stream(args[1]);
par ser . par se(xsl strean);

xsl doc = parser. getDocument () ;

/1 instantiate a styl esheet

XSLStyl esheet xsl = processor.newXSLStyl esheet (xsl doc) ;
/1 Apply styl esheet

XSLProcessor processor = new XSLProcessor();
XM_Docunent Fragment result =

processor. processXSL(xsl, xml doc);

/1 print the transfornmed document

result.print(Systemout);

} catch (Exception e) {
e.printStackTrace();

}
}

The preceding example is fairly straightforward. It accepts as input, the XML input file, and the XSL stylesheet to
apply. The first thing you need to do is to parse these using the DOMParser and to retrieve the roots of their
respective DOM trees:

// Create an instance of the DOWPar ser
parser = new DOWParser () ;

par ser. set Preser veWi t espace(true);

/'l parse input XM. file

xm stream = new Fi | el nput Stream(args[0]);
par ser. parse(xml strean;

xm doc = parser. get Docunent ();

/'l parse input XSL file

xsl stream = new Fi | el nput Stream(args[1]);
par ser. parse(xsl stream;

xsl doc = parser. get Docunent ();

The important thing to note is that the new parser is explicitly configured to preserve whitespace (by defautt, it is not
unless a DTD is present). This is crucial, as it allows XSLT whitespace rules to determine how white space should
be dealt with.

The next step is to construct a stylesheet object:

/1 instantiate a stylesheet
XSLSt yl esheet xsl = processor. newxSLSt yl esheet (xsl doc) ;

This example, being extremely simple, assumes that the input stylesheet does not reference anything external, such
as included stylesheets, external entities, and so forth. Only in such a case can you get away with passing a null as
the second argument to the XSLStylesheet constructor. Otherwise, you need to create a URL to serve as a
reference point for resolving external references within the stylesheets.

The next step is to create a new XSLProcessor and use it to apply the stylesheet on the input XML document:

/'l Apply styl esheet
XSLPr ocessor processor = new XSLProcessor();
Docunent Fragnent result = processor.processXSL(xsl, xm);

The transformed output is now available to you as a document fragment, which can be further manipulated using the
regular DOM APIs. For the sake of simplicity, this example prints the results:

/1l print the transforned docunent
resul t.print(System out);

A simple yet powerful stylesheet is the identity stylesheet:

<?xm version="1.0"?7>
<Il— Identity transformti on —>
<xsl:styl esheet version="1.0" xmns:xsl="http://ww: w3.org/1999/ XSL/ Transfor m >
<xsl:tenplate match="*| @ | coment () | processing-instruction()|text()">
<xsl:copy>
<xsl:appl y-tenpl ates sel ect="*| @|conmment() | processing-
instruction()|text()"/>
</ xsl : copy>
</ xsl :tenpl at e>
</xsl :stylesheet >

If you apply this stylesheet to any XML document, you get the same document back. You can test the preceding
example by passing it a reference to a file containing the identity stylesheet and (say) the booklist example from
Chapter 2. The output generated would be as expected:

<bookl i st >

<book isbn="0-07-213495- X" >
<title>Oracl e9i XML Handbook</titl e>
<aut hor >Chang, Scardina and Kiritzov</aut hor>
<publ i sher>GCsbor ne</ publ i sher >
<price>49.99</ price>

</ book>

<book isbn="1230-23498-2349879" >
<title>Enperor's New M nd</title>
<aut hor >Roger Penr ose</ aut hor >
<publ i sher>Oxf ord Publ i shi ng Conpany</ publ isher>
<price>15.99</ price>

</ book>

</ bookl i st>

Team LiB m MEXT k

[« revious fnexr]
Navigating XML with XPath

TheXML Path (XPath)language provides a way to address parts of an XML document and some basic functionality
for the manipulation of strings, numbers, and Booleans. XPath is also a W3C standard, currently at version 1.0 but
soon to be 2.0. However, as distinct from other standards, it is designed to be used by host languages. XSLT,
XPointer, and the new XQuery standards use it. Because the use of XPath with XSLT is well documented in XSLT
books, we do not provide an extensive discussion here. However, to help with the examples, we provide a brief
summary.

XPath models an XML document as a tree of nodes. These nodes are of the following types: root nodes, element
nodes, text nodes, attribute nodes, namespace nodes, processing instruction nodes, and comment nodes. As you
can see, these are the same nodes used by DOM.

XPath defines a declarative syntax to navigate these nodes to point to a document subtree or item. Referring to our
sample XML document in the previous section, paths are expressed in a similar fashion to how files and URLs are
expressed: the XPath / refers to the entire document, where /booklist/book/title refers to the <title> element that is
a child of the book element. Attributes can also be selected using the @ symbol prepended to their name. For
example,/booklist/book[@id] refers to the id attribute on the book element.

XPath also defines a way to compute a string-value for each type of node. For some node types, the string-value is
part of the node; for other types of node, the string-value is computed from the string-value of descendant nodes.
For nodes that have a name (for example, element nodes), XPath models these as an expanded name—that is, a
name-value pair, consisting of a local name and a namespace value.

XPath Expressions

XPath expressions are the heart of XPath’s functionality and are used extensively in XSLT. When an XPath
expression is evaluated, the result is an object of one of the types: node-set(an unordered collection of nodes
without duplicates), Boolean (true or false), number (a floating-point number), or string (a sequence of UCS
characters). Expression evaluation occurs with respect to a context, and according to a set of rules and the order in
which to apply them. Since XPath is dependent on the host language, XSLT and XPointer each specify how this
context is determined relative to their use in their respective languages.

The example paths in the previous sections are actually expressions when used in an XSLT stylesheet. Taking a
look at our identity stylesheet, we see the following expression:

Mat ch="*| @| conment ()| processi ng-i nstruction()|text()"

This is evaluated as matching a set of all XML items where the | signifies “or.” Therefore, it matches elements as the
first*, attributesas @*, commentsascomment(),processing instructions as processing-instruction, and text as
text().

Expressions can be constructed not only with path syntax but also by using a rich array of functions that support
operations on node sets, numbers, strings, and Booleans. Table 3-1 provides examples that could be used in a
stylesheet that accepts our booklist.xml file as input.

Table 3-1: Example Xpath Expressions

Example Description

/Ibook Selects all of the <book> elements in the
document

/Ibook|@id="121"] Selects the <book> element whose id is 121

Book[position()=1] Selects the first <book> in the document

[Hkitle | //author Selects all <title> and <author> elements

number sum(//book/price) Returns the sum of all <price> elements whose
parent is <book>

string concat (//bookititle, Returns a concatenated list of titles and authors

/Ibook/author)

Count (/booklist) Returns a count of all books, which is 2

ancestor::book Selects the ancestor node of <book>, which is
<booklist>

These expressions are used as predicates within the XSLT language to activate a template or perform an operation
on selected XML content. They also serve as parameters to XSLT functions, which are distinct from XPath
functions.

[« Freviovs [et |

[« revious fnexr]
Introducing XSLT Stylesheets

XSLTis used to describe rules for transforming a source tree into a result tree. The transformation is achieved by
associating patterns with templates contained within a stylesheet. An XSLT processor matches patterns against
elements in the source tree and instantiates associated templates to create various parts of the result tree. While
constructing the result tree, the processor might filter and reorder elements from the source tree and add arbitrary
structure, as specified by the XSLT transformation. The result tree is separate from the source tree—that is, no
nodes are shared between the two—and its structure can be completely different from the structure of the source
tree.

XSLT stylesheets are well-formed XML documents that contain elements and attributes in the XSLT namespace
(http://www.w3.0rg/1999/XSL/Transform). These elements and attributes are used to provide instructions to an
XSLT processor regarding the transformation it needs to effect. A stylesheet may also contain elements and
attributes that are not in the XSLT namespace. XSLT processors typically interpret these as markup to be directly
added to the result tree. An exception is the case of extension-elements, which serve as XSLT processor
instructions and are in a separate namespace defined using a special mechanism.

XSLT instructions are contained within templates. The result tree is constructed by finding the template rule for the
root node and instantiating its template. When a template is instantiated, each instruction within it is executed and
replaced by the result tree fragment it creates. These instructions may select and process descendant source
elements, which may entail instantiating other templates. It is important to note that elements are only processed
when they have been selected by the execution of an instruction. XSLT uses the XPath language to select elements
from the source tree and to do conditional processing.

An XSLT processor instantiates templates based on pattern-matching rules. In the process of finding an applicable
template rule, more than one template rule may have a pattern that matches a given element. The processor then
uses special conflict-resolution logic (which uses template priorities) to ensure the best template rule is applied.

[« rreviovs [ecr o |

http://www.w3.org/1999/XSL/Transform

[« revious fnexr]
XSL Templates

Templates can be compared to procedures in a structural programming language. Templates contain programming
logic expressed interms of XSLT instructions that process the source tree and change the result tree. In some
cases, even a single template can be used to transform your source tree into a result tree. In fact, XSLT has a
special mechanism called Literal Result Element as Stylesheet, which enables you to embed all your XSLT
processing logic in the body of the result document you want to create.

Templates can either be explicitly named or contain a match expression. When the XSLT processor encounters an
xsl:apply-templatesinstruction, it attempts to match the nodes that were selected with the most appropriate
template (using the match expression). Sometimes, more than one template might match. XSLT specifies a complex
set of rules to help resolve this conflict by assigning priorities to various kinds of match expressions (patterns).
Additionally, a template may itself specify an explicit priority, which the XSLT processor considers while determining
which template to instantiate.

[« rreviovs [ecr o |

[« Fprevious [nexr s |
The XSLT Process Model

XSLT comes with a full-fledged set of instructions that enable you to use it almost like a programming language of its
own. Conditional statements, variables, parameters, and loops exist, just as you would expect in any programming
language. Obviously, XSLT is geared more to do transformations than to write general-purpose programs, but its
rich instruction set makes it a powerful tool, indeed.

The various instructions you can use in XSLT, their syntax, and a brief explanation of what they do are described in
the next few sections.

<xsl:apply-imports/>

This instruction, when encountered while processing a node within a template, directs the processor also to apply
template rules imported into the stylesheet on that node. It has no attributes or content.

<xsl:apply-templates>

The following instruction directs the processor to instantiate a template that matches the XPath expression given by
the value of the select attribute. In the absence of a select attribute, the instruction processes all the children of the
current node, including text nodes. The optional mode attribute can be used to specify the mode of the template to
be used if a conflict occurred. This instruction can also be made to pass parameters to the template being
instantiated (using xsl:with-param) and change the order of processing the selected nodes (as given by xsl:sort):

<xsl : appl y-t enpl at es sel ect = node- set -expression node = gnanme>
<l — Content: (xsl:sort | xsl:wth-param?* ——>
</xsl :apply-tenplates>

[« Frevious Jiecr |

[« revious fnexr]
Introducing XSLT 2.0

When the XSLT 1.0 standard was released, there was no XML Schema standard. Consequently, stylesheets were
extremely limited in the types of transformations and XML operations that they could perform. As of this writing, the
XSLT 2.0 standard is in its final stages and will bring significant enhancements along with expanded functionality and
support for XML Schema. Because the Oracle Java XSLT processor will support this standard, the following
sections provide a brief overview of it.

Note There is also a companion XPath 2.0 standard that incorporates an extensive set of functions and
operators on XML Schema data types. This standard will not be discussed because there is not as yet an
Oracle implementation.

Grouping

In XSLT 1.0, stylesheet writers had great difficulty in creating templates that grouped items. In fact, the most popular
method was one developed by Steve Muench of Oracle that involves using <xsl:key> to create keys for grouping. In
2.0, <xsl:for-each-group> has been introduced to perform this function. An example of its usage to subset and sort
thebooklist.xmlexample by author is as follows:

<xsl : for-each-group sel ect ="book" group-by="author">
<xsl :sort select="current-groupi ng-key()" />
<aut hor >
<xsl : val ue-of sel ect="current-groupi ng-key()" />
<xsl:for-each select="current-group()">

<book>
<xsl : val ue-of select="title" />
</ book>
</xsl :for-each>
</ aut hor >

</xsl :for-each-group>

This produces the following XML output:

<book isbn="0-07-213495- X' >
<title>Oracl e9i XM. Handbook</titl e>
<aut hor >Chang, Scardina and Kiritzov</aut hor >
</ book>
<book isbn="1230-23498-2349879" >
<title>Enperor's New M nd</title>
<aut hor >Roger Penr ose</ aut hor >
</ book>

Function Definitions

In XSLT 2.0, functions can be defined via the xsl:function declaration, callable from any XPath expression in the
stylesheet. The name of the function must be a QName, along with any parameters defined via xsl: param
elements. In this manner, stylesheet creators can define their own functions in much the same way that functions
are created in other programming or scripting languages. The following example defines a function that takes an
integer and returns its lexical name in uppercase:

<xsl : function name="str: nuntostr" as="xs:string">
<xsl :param name="val ue" as="xs:integer"/>
<xsl: nunber value="$value" format="N'/>
</xsl :function>

This can be used in a template:

<xsl:tenplate match="/">
<out put >
<xsl:value-of select="str:nuntostr(9)"/>
</ out put >
</xsl :tenpl at e>

This template returns the following:
<out put >NI NE</ out put >

Multiple Result Documents

In XSLT 2.0, stylesheet writers can invoke <xsl:result-document> to create a result tree that can then be
validated. The root node of this tree is the document node. The utility of this is that different output formats can be
specified for the result tree and validation can occur on these different formats. Turning once again to booklist.xml,
the following template will split it into separate files, bookl.htmlandbook2.html:

<xsl :tenplate match="/">
<xsl :for-each-group sel ect ="/ bookl i st/ book">
<xsl:result-docunent href="book{position()}.htm "
format="book-format" validation="strip">
<htm xm ns="http://ww. w3. org/ 1999/ xhtn ">
<head><titl e><xsl:value-of select="./title"/></title></head>
<body>
<xsl : copy- of select="current-group()"/>
</ body>
</htm >
</ xsl : resul t-docunent >
</ xsl: for-each-group>
</xsl:tenpl at e>

The output of book1.htmlwill be

<htm xm ns="http://wwmv. w3. org/ 1999/ xht m ">
<head><titl e>Oracl e9i XM Handbook</titl e></ head>
<body>
<title>Oracl e9i XM Handbook</titl e>
<aut hor>Chang, Scardina and Kiritzov</ author>
<publ i sher >Gsbor ne</ publ i sher>
<price>49.99</pri ce>
</ body>
</ htnm >

Temporary Trees

In XSLT 2.0, temporary trees are available for processing. In this manner, intermediate results of transformations
can be accessed and then discarded. These trees can be constructed by evaluating an xsl:variable,xsl:param, or
xsl:with-param element that has nonempty content (referred to as the variable-binding element), the value of which
becomes the document node of the temporary tree.

The advantage is that now, instead of employing one large template, complex XSLT transformations can be broken
down and modularized. Since values can be passed in, lookup tables for various mappings can be employed. The
following is example syntax showing how to pass the tree between templates that may apply successive styles:

<xsl :inmport href="nodern.xsl">
<xsl :import href="sophi sticated. xsl">
<xsl :vari abl e name="styl e">
<xsl :apply-tenplates select="/" node="nodern" />
</xsl :variabl e>
<xsl:tenplate match="/" />
<xsl :apply-tenplates select="$styl e" node="sophi sticated"/>
</xsl :tenpl at e>

[« rreviovs [nexr s |

[« Fprevious [nexr s |
The Oracle XSLT Extensions

For Oracle XSLT extensions, you need to understand that once you define an XSLT extension in a certain
programming language, the XSL file can be used only with XSL processors that can invoke such an extension. For
example, if you define an XSLT extension function in Java, this function can be invoked only by an XSL processor
that can invoke Java calls. Currently, no extensions exist for Oracle XSL processors in C/C++.

In addition, you should use XSLT extensions only if the built-in XSL functions can’t help you solve the problem. For
example, instead of creating an arc tangent function, you can use the built-in cosine and sine functions to achieve
this functionality.

Finally, if you are thinking of using a specific XSL processor, you need to have the namespace of the extension
class start with the proper URL. For example, when using the Oracle XSLT extensions, the namespace to prefix is
http://www .oracle.com/XSL/Transform/ava.

Useful Built-in Java Oracle XSLT Extensions

Defined for use by the Java Oracle XSLT processor, two such extensions are <ora:output> element and
<ora:node-set>, where xmins:ora="http://www.oracle.com/XSL/Transform/java”. When <ora:output> is used
as a top-level element, it is similar to the <xsl:output> extension function, except that <ora:output>has an
additional attribute name that is used as an identifier. When <ora:output> is used in an XSL template, again, it is
similar to the <xsl:output> extension function, except that it has two additional attributes, use and href, which
specify the name of the top-level <ora:output>to be used and give the output URL for the subtree of the XSLT
result, respectively.

<xsl:output>is very useful when you need to create multiple outputs from one XSLT transformation, such as the
product specifications. Using <xsl:output>, you can create the index pages with links to the set of subpages for the
topic detalils.

The second built-in extension function, <ora:node-set>, converts aresult tree fragment into a node-set, which
makes it a very useful convenience function. This function is useful if you need to refer the existing text or
intermediate text result in XSL for further XSL transformation.

[« Freviovs [et |

http://www.oracle.com/XSL/Transform/java
http://www.oracle.com/XSL/Transform/java

[« Fprevious [nexr s |
The XSLT Virtual Machine

New in Oracle Database 10g is an XSLT Virtual Machine (XSLTVM) available for C and C++. It is the software
implementation of a CPU designed to run compiled XSLT code. To do this, XSL stylesheets need to be compiled
into the code the XSLTVM understands. Therefore, an XSL compiler is also included that is compliant with the XSLT
1.0 standard. This compilation can occur at runtime or can be stored for runtime retrieval. Thus, transformations are
performed more quickly with higher throughput, as the stylesheet not only doesn’t need to be parsed, but the
templates are applied with an index lookup instead of an XML operation.

Using the XSLTVM involves a bit different processing model and APIs. The following is a code listing of this
process:

/* Create or re-use an XM. neta context object. /
xctx = Xm Create(&err,...);
/* Create or re-use an XSLT Conpil er object. /
conp = Xm Xvnmr eat eConp(xct X) ;
/* Conpile an XSL styl esheet and store/cash the result bytecode. /
code = Xml XvmConpi | eFi | e(conmp, xslFile, baseuri, flags, &err);
/* Create or reuse an XSLTVM object. The explicit stack size setting is needed
when XSLTW terminates with "... Stack Overfl ow' message or when snmaller
menmory footprints are required (see Xm XvnCreate). /
vm = Xm XvnCreate(xctx, "StringStack", 32, "NodeStack", 24);
/* Set a styl esheet bytecode to the XSLTVM object. */
I en = Xm XvnGet Byt ecodelLengt h(code, &err);
err = Xnl XvnBet Byt ecodeBuf fer (vm code, |en);
/* Transform an instance XML docunment. */
err = Xnm XvniransfornFile(vm xm File, baseuri);
/[* Clean up. */
Xm XvnDest roy(vm ;
Xm XvnDest r oy Conp(conp) ;
Xm Destroy(xctx);

We discuss the XSLTVM in more detail in Chapter 21, in which we use it in an application.

[« Freviovs [et |

[« Fprevious [nexr s |
XSLT and the Database

Many application developers are putting their business data to work over the Web as the Internet drives an
explosive demand for flexible information exchange. Developers require standards-based solutions to this problem.
SQL, XML, and XSLT are the standards that can get the job done in practice.

SQL is the standard you are already familiar with for accessing appropriate views of database-stored business
information in your production systems. XML provides an industry-standard, platform-neutral format for representing
the results of SQL queries as datagrams for exchange. XSLT defines the industry-standard way to transform XML
datagrams into target XML, HTML, or text format as needed.

Beginning in Oracle9i, XSLT transformations can be invoked from SQL with the xsltransform() function. It is also
available as xmltype.transform(). This function invokes the C XSLT 1.0 processor from the XDK that is linked into
the kernel of the Oracle database. The function takes as parameters an XMLType and the stylesheet, as shown in
the following example:

SELECT XM.Tr ansf or m(bookli st.xm col,
(select stylesheet fromstyl esheet _tab where id = 1)).getStringVal ()
AS result FROM book tab bookli st;

This function can also take an explicit stylesheet or a DBURI to the stored location. The following is the same query
using a DBURI:

SELECT XM.Tr ansf or m(bookli st.xm col ,
dburi Type('/ SCOTT/ STYLESHEET TAB/ROWI D = 1]
/ STYLESHEET/text()').getXM.()).get Stri ngVal ()
AS result FROM book_t ab bookli st;

We will discuss the SQL XML functions in greater detail in the chapters that deal with the Oracle XML database.

[« rreviovs [exr |

[« Freviovs [nexrs]

Best Practices

The following sections describe some best practices to follow when employing XSL and XSLT functionality. Simply
put, these sections go over some common problems that you may encounter and explain how to solve them.

Tuning Tips for XSLT

Here are two tips for tuning XSLT. First, avoid unconstrained axes such as //foo because they cause the entire tree
to be traversed. Second, if element whitespace is not needed by the transformed output, then <xsl:strip-space
elements="*"/> can be set in the stylesheet, dramatically reducing the size of the DOM tree built and thus
improving the transformation performance. Note that when using <xsl:strip-space elements="“*"/>, a prebuilt DOM
for the input XML document cannot be passed as a parameter to the XSLT processor. Instead, you need to pass in
an URL or a text stream.

The document() Function in XSLT

This function is useful when the XSLT transformation needs data from multiple XML documents. In addition, when
the XSLT output includes a large section of XML data, use the <xsl:copy> extension function to copy the XML
document content returned from the document() function. Finally, when using the document() function in the XSL
file, make sure that the setBaseURL () is correctly set; if it is not set, the XSL file will not be found by the XSLT
processor.

Improving the Overall Performance of XSLT for Multiple Transformations

In Oracle Database 10g, the Oracle XML Developer’s Kit provides an XSLT that is useful when you need to reuse
XSL stylesheets for a large number of XSL transformations. It precompiles the XSL in binary format with
optimizations for use in the XSL TVM. This greatly speeds up the overall XSL transformation, up to 200 percent,
especially if you have large XSL stylesheets.

Using Java, you can also reuse the XSLStylesheet objects by prebuilding them and reusing them in the
XSLProcessor.process() procedures. The Java XSLT processor also allows multiple processors in different
threads to share the same XSL stylesheet, because it is threadsafe.

[« Freviovs [et |

[rrevious fuecrs]
Chapter 4: Validating XML with DTDs and XML Schemas

Although XML enables users to define their own markup languages to describe and encapsulate data into XML files,
all XML documents must conform to basic “grammar” rules so that application developers can develop software with
the assurance that all XML documents conform to certain basic rules of syntax. Document type definitions (DTDs)
and XML schemas (XSDs) help you to ensure that your XML documents adhere to specified structures, constraints,
and in the case of XSDs, datatypes so that they can be used by applications. This chapter discusses both of these
methods while comparing and contrasting how and when they should be used. It will then discuss how these relate
to database data and specifically the XML support in Oracle Database 10g.

Introducing the DTD

DTDs are inherited from SGML and are not in XML syntax. They specify the structure of an XML document including
the hierarchical relationship between specified elements and their included attributes. A DTD can be associated with
an XML document either by its being included in that document or by internally referencing an external file. If the
DTD is contained in an external file, it is referenced through a uniform resource locator (URL) of the form
http://www .foobar.com/book.dtd.

For example, the following booklist.xmlfile can have a DTD associated as an embedded decalarion within the XML
file itself:

<?xm version = "1.0"?>
<l-- DID bookcat al og may have a nunber
<! DOCTYPE bookcatal og [

of book entries -->

<! ELEMENT
<! -- Each
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

bookcat al og (book) *>

book el enent has a title, 1 or
book (title, author+, |SBN, publisher,
titl e (#PCDATA) >

aut hor (firstnane, |astnanme)>
firstname (#PCDATA) >

| ast name (#PCDATA) >

| SBN (#PCDATA) >

publ i sher (#PCDATA) >

publ i shyear (#PCDATA) >

price (#PCDATA) >

nor e authors,

-->
price)>

etc.
publi shyear,

<! ATTLI ST
1>
<bookcat al og>
<book>
<title>H story of
<aut hor >
<first nane>Juan</first name>
<l ast name>Smt h</| ast name>
</ aut hor>
<| SBN>99999-99999</ | SBN>
<publ i sher >O acl e Press</publisher>
<publ i shyear>2000</ publ i shyear>
<price type="US'>1.00</price>
</ book>
</bookcat al og>

price type (US| CAN| K| ELRO #REQJ RED>

Interviews</title>

Following the DOCTYPE declaration of the DTD is the root element declaration <!ELEMENT> of bookcatalog. An
element simply consists of a start tag, other elements or text and an end tag. For example, the <bookcatalog>
element contains all of the elements, attributes, and text within the document. Such an element is called the root
element. Only one root element may exist within an XML document. The root element marks the beginning of the
document and is considered the parent of all the other elements, which are nested within its start tag and end tag.
For XML documents to be considered “valid” with respect to this DTD, the root element <bookcatalog> must be the
first element to start off the body of the XML document.

Following this is the element declaration, which stipulates the child elements that must be nested within the root

http://www.foobar.com/book.dtd

element <bookcatalog>, the content model for the root element. Note that all the child elements of <bookcatalog>
are explicitly called out in its element declaration, and author has a + as a suffix. This is an example of the Extended
Backus-Naur Format (EBNF) that can be used for describing the content model. The allowed suffixes are

m ? For O or 1 occurrence
m * For O or more occurrences
m + For 1 or more occurrences

Note also the use of #PCDATA to declare that the element text must be non-marked-up text, and the price’s
required attribute values are explicitly declared. The difference between CDATA and PCDATA is that CDATA
sections are simply skipped by the parser and aren’'t checked for well-formedness; hence, they can be viewed as
non-parsed character data.

A DTD in an external file can also be used. In this case only a reference is embedded in the XML document as this
other version of the booklist.xml file.
<?xm version="1.0" encodi ng="UTF-8" standal one="no" ?>
<I DOCTYPE bookcatal og SYSTEM " bookl i st. dt d">
<bookcat al og>
<book>
<title>H story of
<aut hor>
<first nane>Juan</first name>
<last name>Snith</|ast nanme>
</ aut hor >
<I SBN>99999- 99999</ | SBN>
<publ i sher >Or acl e Press</publi sher>
<publ i shyear >2000</ publ i shyear >
<price type="US">1. 00</ price>
</ book>
</bookcat al og>

Interviews</title>

Note that within the <IDOCTYPE> processing instruction, in place of the actual DTD content, is SYSTEM
“booklist.dtd”, which refers to the external DTD. This DTD is then of the following form:

<! ELEMENT
<l -- Each
<! ELEMENT

bookcat al og (book) *>
book el ement has a title, 1 or nore authors, etc. -->
book (title, author+, |SBN, publisher, publishyear, price)>

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ATTLI ST

titl e (#PCDATA) >

aut hor (firstname, |astnane)>
firstname (#PCDATA) >

| ast name (#PCDATA) >

| SBN (#PCDATA) >

publ i sher (#PCDATA) >

publ i shyear (#PCDATA) >

price (#PCDATA) >

price type (US| CAN| K] ELRO #REQJ RED>

When it comes to validating XML documents, functionally these two methods are the same.

[« Freviaus Juexr s |

[« revious fnexr]
Validating XML Against DTDs

A validating XML parser, by parsing the XML document according to the rules specified in the DTD, tries to
determine whether the document conforms to the DTD (valid), meaning that the structural relationships and
sequences are the same. Depending on the implementation of the parser, if an error is encountered during
validation, processing may stop, as in “panic mode” exception processing, or continue with internal corrections.
Warnings or errors may be reported either as processing occurs or at the very end of the processing. Finally, most
processors have a mode whereby validation can be turned off; however, with DTDs, certain constructs defined in
DTDs not discussed here, such as entity definitions, must still be processed.

[« rreviovs [exr |

[« revious fnexr]
Introducing the XML Schema Language

In February 1999, a W3C Note detailing the XML Schema Working Group’s XML Schema requirements was
published. This document, titled “XML Schema Requirements,” includes an overview, purpose, usage scenarios,
design principles, and the structural, datatype, and conformance requirements for the XML Schema language.

The“Overview” section states that the XML Schema Working Group, by charter, is assigned to look into a more
informative constraint on the XML document than is provided by DTDs, namely one that would also, among other
things:

m Support both primitive and complex datatypes
m Support restrictions or extensions on datatypes
m Be written in XML

For example, consider the following snippet of a DTD:

<!l ELEMENT book (title, author, publisher, price)>
<IELEMENT title (#PCDATA)>

<! ELEMENT aut hor (#PCDATA) >

<IELEMENT publi sher (#PCDATA)>

<! ELEMENT price (#PCDATA)*>

This could appear in XML Schema format as the following XSD file:

<?xm version="1.0"?7>
<xsd: schena xnl ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenm"
xm ns: bk=http:// ww mypubl i shsite.com book>
<xsd:annot at i on>
<xsd:docunentation xnm :lang="en">
Possi bl e XML Schenma equi val ent of a DTD shown in Listing 1.
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: el ement name="title" type="xsd:string" mnCccurs="1"
naxQccurs="1"/ >
<xsd: el ement nane="aut hor" type="xsd:string" mnCccurs="1"
maxCOccur s="unbounded"/ >
<xsd: el ement nane="publisher" type="xsd:string" mnOccurs="1"
maxCccur s="unbounded"/ >
<xsd: el ement nane="price" type="xsd:string" mnCccurs="0"
maxQccur s="*"/ >
<xsd: el enent nane="Book"/ >
<xsd: conpl exType>
<xsd: sequence>
<xsd:el ement ref="bk:title"/>
<xsd: el ement ref="bk:author"/>
<xsd: el enment ref="bk: publisher"/>
<xsd: el enent ref="bk:price"/>
</ xsd: sequence>
</ xsd: compl exType>
</ xsd: el ement >
</xsd: schema>

The “Purpose” section of the “XML Schema Requirements” Note succinctly states the purpose of a schema:

The purpose of a schema is to define and describe a class of XML documents by using these constructs to
constrain and document the meaning, usage and relationships of their constituent parts: datatypes, elements and
their content, attributes and their values, entities and their contents and notations. Schema constructs may also
provide for the specification of implicit information such as default values. Schemas document their own meaning,
usage, and function. Thus, the XML schema language can be used to define, describe and catalogue XML
vocabularies for classes of XML documents.

The “Usage Scenarios” section of the Note lists the types of XML applications and activities that should benefit from
an XML schema:

m Publishing and syndication

m Electronic commerce transaction processing

m Supervisory control and data acquisition

= Traditional document authoring/editing governed by schema constraints

m Use schema to help query formulation and optimization

m Open and uniform transfer of data between applications, including databases
m Metadata Interchange

The “Design Principles” section set forth specific goals for the XML Schema language to be met in order to meet the
design requirements. These included that it must be a simple, self-describing language in XML that was widely
usable by applications across the Internet and was coordinated with core XML specifications such as XML
Information Set, Links, Namespaces, Pointers, Style and Syntax.

Thefinal section, “Requirements,” lists the structural requirements of what the XML Schema language must define,
the datatype requirements of the language, and the conformance requirements. The XML Schema Working Group
took these requirements and produced a number of working drafts, which culminated in the May 2001 “W3C
Recommendation for XML Schema.” This document consists of three parts: “XML Schema Part 0: Primer”; “XML
Schema Part 1: Structures”; and “XML Schema Part 2: Datatypes.”

[« Freviovs [et |

[« Freviovs [nexrs]

Simple and Complex Datatypes

XML Schema Part 1 and 2 goes over the basic concepts of what datatypes can be declared in an XML schema and
the properties associated with such datatypes. Simple built-in datatypes exist, along with complex datatypes defined
by the XML schema designer. An example of a complex type definition for an address in a purchase order follows:

<xsd: conpl exType nane="USAddress" >

<xsd: sequence>

<xsd: el ement name="name" type="xsd:string"/>

<xsd: el ement name="street" type="xsd:string"/>

<xsd: el ement name="city" type="xsd:string"/>

<xsd: el enent name="state" type="xsd:string"/>

<xsd: el ement name="zi p" type="xsd:decimal"/>

</ xsd: sequence>

<xsd:attribute name="country" type="xsd: NMTOKEN' fi xed="US"/>
</xsd: conpl exType>

Important things to note are that XML Schema namespace prefixes appear even on the built-in datatypes, such as
string, and that a complex data type is surrounded by an inner sequence tag. In addition, constraints such as
minOccursandmaxOccurs, whose default values equal 1, could have been put on the name element for number
of occurrences, as in the following:

<xsd: el ement name="nanme" type="xsd:string" mnQcurs="1" maxCQccurs="2"/>
XML Schema Part 2 lists all the possible simple built-in datatypes for XML Schema, as outlined in Table 4-1.

Table 4-1: XML Schema Built-in Datatypes

Simple Built-in Data Type Example (Comments)

string

normalized String

token

byte

unsignedByte
base64Binary
hexBinary

integer
positivelnteger
negativelnteger
nonNegativelnteger
nonPositivelnteger
int

unsignedInt

long

unsignedLong
short

unsigned Short

decimal

this is a string

this is a string (newlines, tabs, carriage returns,
etc., are translated into spaces)

this is another string (newlines, tabs, carriage
returns, etc., are translated into spaces; adjacent
spaces are collapsed into 1 space; trailing and
leading spaces are removed)

-1, 126

0, 126

GpM7

Offf

—126789, 0, 126789 (integer values only)
1, 2, 126789 (positive integer values only)
—126789, -2, -1 (negative integer values only)
0, 1,126789

-126789, -1, 0

-1, 0, 2, 126789675

0, 1, 1267896754

-1, -2, 0, 12678967543233

0, 1, 3, 12678967543233

-1, -2,-5,0,1, 12678

0,1,5,12678

-1.2, 0, 1.2, 10000.00

Float

-0, 0, 12, INF, NaN 1.0E-2 (32-hit floating point)

Double -0, 0, 13, INF, NaN 1.0E-20 (64-bit floating point)

Boolean true, false, 1,0

Time 21:21:21.000-01:00 (UTC)

dateTime 2001-01-01T121:21:21.000-01:00 (date + time
zone + UTC)

duration P1Y2M3DT10H30M12.0S (year, month, day, hour,
minute, second)

date 1999-05-31

gMonth -01-

gYear 2001

gYearMonth 2001-01

gDay =31

gMonthDay —-05-31

Name anyname (XML 1.0 Name)

QName xsd:anyname (XML Namespace Qualified Name)

NCName anyname (XML Namespace Qualified Name
without the prefix and colon)

anyURI http://www.oracle.com

language en-Us

ID (a unique token, XML 1.0 ID attribute)

IDREF (a token that matches an ID, XML 1.0 IDREF
attribute)

IDREFS (list of IDREF, XML 1.0 IDREFS attribute)

ENTITY (XML 1.0 ENTITY attribute)

ENTITIES (XML 1.0 ENTITIES attribute)

NOTATION (XML 1.0 NOTATION attribute)

NMTOKEN US, Canada (XML 1.0 NMTOKEN attribute)

NMTOKENS US UK Canada (XML 1.0 NMTOKENS attribute)

These simple datatypes can also be used as a base type for ones that you can create. You can create these user-
defined types by specifying constraints in three ways. First you can define a type by restriction by specifying
additional aspects such as a pattern, value range, etc. Secondly, you can define alist type made up of a set of
simple datatypes. Finally, you can define a uniontype which can be satisfied from a set of types. There are,
however, no extension constraints. Some additional examples are the string, normalizedString, token,
base64Binary, hexBinary, Name, QName, NCName, anyURI, language, ID, IDREFS, ENTITY, ENTITIES,
NOTATION, NMTOKEN,andNMTOK ENSdatatypes all can take the following facets: length, minLength,
maxLength, pattern (this can be a regular expression such as a date format like MM/DD/YYYY), enumeration,
andwhiteSpace. The number-oriented datatypes, such as byte, unsignedByte, integer, positivelnteger,
negativelnteger, nonNegativelnteger,nonPositivelnteger, int,unsignedint,long, unsignedLong, short,
unsignedShort,anddecimal,all can take the following facets: maxinclusive, maxExclusive,mininclusive,
minExclusive, totalDigits, and fractionDigits.

The following examples illustrate the syntax of restrictions on simple types:
<l-- Range -->
<xsd: si npl eType>
<xsd:restriction base="xsd:integer">
<xsd: m nl ncl usive val ue="0"/>
<xsd: max| ncl usive val ue="100"/>

http://www.oracle.com

</ xsd:restriction>
</ xsd: si npl eType>

<!-- Enuneration -->

<xsd: si npl eType>

<xsd:restriction base="xsd:string">
<xsd: enuneration val ue="Audi "/ >
<xsd: enuneration val ue="CGol f"/ >
<xsd: enuneration val ue="BMV />

</ xsd:restriction>

</ xsd: si npl eType>

<l-- Patterns -->
<xsd:si npl eType>
<xsd:restriction base="xsd:string">
<xsd: pattern val ue="[a-zA-Z0-9]{8}"/>
</xsd:restriction>
</ xsd: si npl eType>

<l-- Wiitespace: preserve, collapse, repl ace -->

<xsd: si npl eType>
<xsd:restricti on base="xsd: string">
<xsd: whit eSpace val ue="preserve"/>
</xsd:restriction>

</xsd: si nmpl eType>

<l-- Sring length -->
<xsd: si npl eType>
<xsd:restricti on base="xsd: string">
<xsd: m nLengt h value="5"/>
<xsd: maxLengt h value="8"/>
</xsd:restriction>
</xsd:si mpl eType>

Complex types also can be constrained, but they have the flexibility of accepting both restriction and extension
constraints. The following examples illustrate the syntax for complex types along with their constraints:

<!-- Hement Extensions -->
<xsd: conpl exType name="f per sont ">
<xsd: conpl exContent >
<xsd: ext ensi on base="per soni nf 0" >
<xsd: sequence>
<xsd: el ement name="addr ess" type="xsd:string"/>
<xsd: el ement name="city" type="xsd:string"/>
<xsd: el ement name="country" type="xsd:string"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</xsd: conpl exType>

<l-- Attribute only -->>
<xsd: el ement nanme="product">
<xsd: conpl exType>
<xsd: attri bute name="prodid" type="xsd: positivelnteger"/>
</ xsd: conpl exType>
</xsd: el enent >

<l--Sinmple Content - Extension/Restriction -->
<xsd: el ement nanme="shoesize">
<xsd: conpl exType>
<xsd: si npl eCont ent >
<xsd: ext ension base="xsd:i nteger">
<xsd: attribute nane="country" type="xsd:string" />
</ xsd: extensi on>

</ xsd: si npl eCont ent >
</ xsd: conpl exType>
</xsd: el enent >

<!-- Mxed Content -->
<xsd: el ement name="letter">
<xsd: conpl exType m xed="true">
<xsd: sequence>
<xsd: el enent nane="name" type="xsd:string"/>
<xsd: el enent nane="orderi d" type="xsd: positivel nteger"/>
<xsd: el ement name="shi pdate" type="xsd:date"/>
</ xsd: sequence>
</ xsd: conpl exType>
</xsd: el ement >

XML Schema extends the DTD functionality of IDs and IDREFs by introducing user-defined KEYs and KEYREFs.
The following examples illustrate their syntax:

<el ement name="pur chaseReport">
<conpl exType>
<sequence>
<el enent name="regi ons" type="r:RegionsType">
<keyref name="dumrmy2" refer="r:pNunkKey">
<selector xpath="r:zip/r:part"/>
<field xpath="@unber"/>
</ keyref >
</el enent >
<el ement nane="parts" type="r: PartsType"/>
</ sequence>
<attribute nane="period" type="duration"/>
<attri bute nane="peri odEndi ng" type="date"/>
</ compl exType>

<uni que name="dummyl" >
<sel ector xpath="r:regions/r:zip"/>
<field xpath="@ode"/>

</ uni que>

<key nane="r: pNunKey" >
<sel ector xpath="r:parts/r:part"/>
<field xpath="@wunber"/>
</ key>
</ el enent >

Note that there is an XPath selector to specify the path to the named key as well as the attribute value to be used for
the key’s value.

Note The Oracle XML Database does not currently support KEY/KEYREFs directly; however, this functionality
can be implemented using SQL constraints.

Additionally, union types such as <xsd:union memberTypes="mystates allstate” />, complexTypes from simple
types, mixed attributes for complexTypes to indicate data between child elements, anyType such as
type=“xsd:anyType”to indicate that the element could be of any datatype, are also allowed. Annotations such as
<xsd:annotation> are also allowed, because they are simply mechanisms to embed documentation in the schema,
such as in this example:

<xsd: annotat i on>
<xsd:docunentation xm :lang="en">
hi there
</ xsd: docunent at i on>
</xsd:annot ation>

Finally, user-defined mechanisms such as an attribute group can be created to have a number of attributes
associated with an element. This includes <xsd:attributeGroup name="BookDelivery” > with a reference like
<xsd:attributeGroup ref="BookDelivery” >within the definition of the complexType. We recommend that you

review the XML Schema Part O:Primer for a full discussion of the specification. See the Appendix for the locations of
all the XML Schema specifications.

[« erevious [e |

[« revious fnexr]
Validating XML with XML Schemas (XSDs)

A validating XML parser, by parsing the XML document according to the rules specified in the XML schema, tries to
determine whether the document conforms to the XML schema (valid), meaning that the structural relationships and
sequences are the same and that conformance to the datatype rules specified in the XML schema are observed.
Depending on the implementation of the parser, as with parsers that validate XML documents against DTDs, if an
error is encountered during validation, processing may stop (as in “panic mode” exception processing) or continue
with internal corrections. Warnings or errors may be reported either as processing occurs or at the very end of the
processing. For a validating XML Schema parser, one final requirement is that if a DTD is also included by the XML
document and entity definitions are encountered in the DTD, these must be taken into account by the XML schema,
along with any other constructs possibly defined in the DTD. However, since the XML Schema specification does
not exactly define what occurs if both a DTD and an XML schema exist for an XML document, such a situation is left
to the validating parser to determine what exactly to do, which creates an implementation-dependent scenario.

Oracle produces, as part of the XDK, three XML Schema processors, Java, C, and C++, that can perform both DTD
and XSD validations. In addition, the Oracle XML DB can perform validation on XML documents as they are inserted
or updated. This is built in to the support for XMLType but can also be directly invoked from PL/SQL. Specific code
ilustrating schema validation will be presented later in the chapter, but it is useful to understand the underlying
process model.

Schema validation can be triggered in two ways: external to the input document or as a result of the input document.
This means that an XML schema can be passed in when the XML parser is invoked or, if the input document
includes an XML Schema declaration providing a URL to the location, the XML schema can be fetched during the
process. The following is the syntax of this type of declaration with and without namespaces:

<root xm ns: xsi=http://ww. w3. org/ 2001/ XM_Schena- i nst ance
xsi :schemalLocati on="[t arget _namespace] [schemafile_Il ocation]">

<root xm ns: xsi="http://ww.w3.o0rg/2001/ XM_Schena-i nstance"
xsi : noNanespaceSchemaLocati on="[schemafil e_| ocati on] ">

The schema processor needs not only to build an object of the input document through parsing but also to parse the
schema document into an object for the validation process to begin. This is where the different processors depart.
For Java, the input and schema documents are parsed using SAX with a DOM built as needed from these SAX
events. If validation is only required, then it is completely SAX based. For C and C++ processors, DOM parsing and
processing is used throughout the validation process.

The Oracle XML DB, even though it uses the C XDK components, performs this processing quite differently. If it has
a registered copy of the XML schema, it has already compiled and stored it as a database object, so no schema
parsing is required. Upon inserting a document, the C SAX parser is invoked and the validation occurs against the
compiled schema.

In all cases, if the XML schema has one or more <xsd:import> or <xsd:include> elements, as illustrated next, they
will be retrieved and expanded into one aggregated schema before any validation occurs.

<xsd:inmport namespace=http://ww w3school s. com schema
schemalLocati on="htt p: // ww w3school s. conml schema/custoner. xsd"/ >
<xsd:include schemalLocation="http://ww.w3school s. conf schena/ cust omer . xsd"/ >

[« Freviovs [nexrs]

[« Fprevious [nexr s |
XML Document Models and the Database

XML documents consist of text that conforms to a hierarchy or tree structure specified by a DTD or XML schema. In mos’
cases you can easily store this hierarchical data in an optimal internal form using object-relational tables. All the existing
and future internal applications can work with the information in the most efficient way possible. When you retrieve
information, for sharing with partners or other applications, you can present the appropriate view of data and document
content specific to the task at hand as integrated XML. Oracle Database’s 10g XMLType views enable you to present dat
in any number of “logical” combinations, hiding any details of their underlying physical storage. You can effectively
transform the structure of one or more underlying tables into a more useful or more appropriate structure for the demands
of a specific application. When you link views of information with other views of related information, they quite naturally
form “trees” or “graphs” of related data. When you represent database information as XML, the previous related views
provide the foundation for many different tree-structured XML documents.

Mapping DTDs to Database Schemas

Here, we offer a simple example of mapping a database table to an XML DTD of the following form:

<IELEMENT table (rows)*>

<IELEMENT rows (columl, colum2, ...)>
<! ELEMENT col um1 (#PCDATA) >

<! ELEMENT col um2 (#PCDATA) >

However, a database provides even more capability than a DTD for expressing rules. Using DTDs, you cannot define typ
information other than numbers, strings, and IDs. The database schema defines type information and constraints, such a
permissible value ranges. A database schema enables you to define relationships or dependencies. For example, your e-
commerce business might receive orders as XML documents. By using a database, you can link customer and order
information, and define a rule about not processing orders for closed accounts. In spite of the limitations in DTDs, mappir
a database schema to a DTD presents the database as a virtual XML document to the tools that need XML documents a
input.

A database consists of a schema associated with each database user. Each schema associated with a user is a
collection of schema objects accessible to the user. While mapping a database scheme to a DTD, each user is mapped
as a child element of the top-level element identified by the SID of the database instance. An element representing a use
schema and its child elements uses a unique namespace to avoid conflicts with schema objects defined in other user
schemas.

You can perform the following steps to generate a simple DTD from a relational schema:
1. For each table, create an element.

2. For each column in a table, create a PCDATA-only child element.

For each object or nested table column, create an ELEMENT-content only child element with attributes or nested column:
as child elements.

For example, the following DTD corresponds to a simple database schema:

<! ELEMENT dbschena (sys, scott, ...)>
<! ATTLI ST dbschena
xm ns CDATA #FI XED "htt p: //wmv. or acle. coml xm / dbschena”
sid CDATA #REQU RED>
<! ELEMENT scott (BookList, ...)>
<I'ATTLI ST scott
xm ns CDATA #FI XED "htt p://wwv. oracle. com’ xm / dbscherme/ scott" >
<! ELEMENT BookLi st (Book)*>
<I ATTLI ST Book row_num CDATA #| MPLI ED>
<IELEMENT Book (Title, 1SBN, Author, Publisher, (Review?*)>

Unfortunately, a number of drawbacks exist to mapping a database schema to a DTD. For example, there is no way to
predict datatypes or column lengths definitively from the DTD. The solution to this problem is to use datatypes in XML
documents using XML schemas.

Mapping XML Documents to a Database Schema

The format for DTDs is an existing worldwide standard and will likely exist and be improved upon for years. However,
because of the inherent limitations of DTDs and the increasingly data-oriented role that XML is being asked to assume
because of developments in e-business and e-commerce, the W3C standards body is promoting XML Schema, rather
than attempting to push the current DTD standards any further. Using an XML schema, you can map the simple databas
table into an XML schema of the following form:

<schema t ar get Nanespace="sone NSURI ">
<xsd: conpl exType nanme="tabl e">
<xsd: sequence>
<xsd: el ement nane="rows" m nOccurs="0" maxOccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="rows" >
<xsd: sequence>
<xsd: el ement name="col utmil" type="xs:string"/>
<xsd: el ement nane="col um2" type="xs:date"/>

</xsd: sequence>
</ xsd: conpl exType>
</ xsd: schenma>

Note that you can specify additional datatypes using the <xsd:element> attribute of the form type="xsd:datatype" wher
datatype is either an XML Schema simple datatype or a named type defined in the XML schema.

Supported Database Mappings

To transfer data between an XML document and a database, you must map a document structure defined by a DTD or a
XML schema to a database schema and vice versa.

When mapping XML documents associated with a DTD or an XML schema to a database schema for the purpose of
storing XML in OracleXML DB, four basic strategies exist:

= Map the complete XML document as a single, intact object, such as CLOBs

= Map XML elements to object-relational tables and columns in the database schema

m Map fragments of XML documents as CLOBs and the rest of the document as object-relational tables
m Map XML documents to an Oracle XMLType

You can choose one of the previous approaches, depending on the structure of the XML document and operations
performed by the application. You can also store the XML DTD or schema in the database to validate the XML
documents.

XML Documents in CLOBs

Storing an intact XML document in a Character Large Object (CLOB) or Binary Large Object (BLOB) is a good strategy if
the XML document contains static content that will only be updated by replacing the entire document. Examples include
written text such as articles, advertisements, books, and legal contracts. Documents of this nature are known as
document-centric and are delivered from the database as a whole. Storing this kind of document intact within the databas
gives you the advantages of an industry-proven database and its reliability over file system storage. If you choose to store
an XML document outside the database, you can still use the database features to index, query, and efficiently retrieve th
document through the use of BFILES, URLSs, and text-based indexing.

XML Documents as Object-Relational Data

If the XML document has a well-defined structure and contains data that is updatable or used in other ways, the documer
is data-centric. Typically, the XML document contains elements or attributes that have complex structures. Examples of
this kind of document include sales orders, invoices, and airline flight schedules. Oracle Database 10g, with its object-
relational extensions, has the capability to capture the structure of the data in the database using object types, object
references, and collections. Two options exist for storing and preserving the structure of the XML data in an object-
relational form:

m Store the attributes of the elements in a relational table and define object views to capture the structure of the XML
elements

m Store the structured XML elements in an object table

Once stored in the object-relational form, the data can be easily updated, queried, rearranged, and reformatted as neede
using SQL. The XML SQL Utility then provides the means to store an XML document by mapping it to the underlying
object-relational storage and, conversely, provides the capability to retrieve the object-relational data as an XML
document. If an XML document is structured, but the structure of the XML document is incompatible with the structure of
the underlying database schema, you must transform the data into the correct format before writing it to the database. Yo
can achieve this using XSL stylesheets or other programming approaches; but, depending on your needs, you might wan
to store the data-centric XML document as an intact single object. Or, you can define object views corresponding to the
various XML document structures and define INSTEAD OF triggers to perform the appropriate transformation and to
update the base data.

XML Documents as Fragment Documents and Object-Relational Data

You can use Oracle Database 10g’s views to view and operate a combination of structured and unstructured XML data a
a whole. Views enable you to construct an object on-the-fly by combining XML data stored in a variety of ways. So, you
can store structured data (such as employee data, customer data, and so on) in one location within object-relational table
and store related unstructured data (such as descriptions and comments) within a CLOB. When you need to retrieve the
data as a whole, you simply construct the structure from the various pieces of data using type constructors in the view’s
SELECT statement. The XML SQL Utility then enables you to retrieve the constructed data from the view as a single XMl
document.

XML Documents as XMLTypes

Finally, you can store an XML document in an Oracle XML DB’s XMLType. XMLType supports searches and queries usir
XPATH-like syntax. It can be created as a database table, view, columns, and as the parameter and return type of SQL,
PL/SQL, and Java functions. For example, the SYS_XMLGEN and SYS_XMLAGG Oracle SQL functions, which generat:
an XML document and aggregate a number of XML documents, respectively, can take as a parameter an XMLTypeobjec
and return an XMLType object. These functions can be embedded in SQL queries as in a simple SELECT statement and
return XML:

SELECT SYS XMLGEN book) FROM bookcatal og WHERE title LIKE ' %ELLI SON% ;

and
SELECT SYS XMLAGH SYS _XM_.GEN(book)).get d obVal () book_I|ist FROM bookcatal og GROUP BY title

The first would return the XML of a book entry and the second would return a list of all the titles of the book entries.

Similarly, the DBMS_XMLGEN PL/SQL package converts the result set from SQL queries to an XML stored in an
XMLType, as in

SELECT SYS XMLAGH SYS_XM.GEN(book)).get d obVal () book _list FROM bookcatal og GROUP BY title
resulting in a listing of all the book titles in XML.

Table creation using XMLTypecolumns and database manipulation language (DML) operations to insert, update, and
delete values is allowed with this new data type, along with datatype member functions such as existsNode() and
extract() that take arguments with XPATH-like syntax to return fragments of XML in the XMLType, such as

SELECT book.extract('//title/text()').getStringval () FROM bookcat al og;

and
SELECT * FROM bookcatal og where book. exi st sNode('//book/title') !'= 0;

[« Freviovs [nexrs]

[« Frevious|
Best Practices

The following are some best practices to follow when employing DTDs and XML schemas.

Designing Your Schema

Defining a schema from scratch can be a daunting task. The following are a set of guidelines that will make your job
easier, reduce errors, and ease maintenance.

1. Name the XML Schema document file to reflect the root element.
2. Ensure the root element is defined as the first top-level element and based on the rootType.
3. Ensure XML Schemas are versioned using the optional version attribute in the <schema/> element.

4. Usexsd:token instead of xsd:string because the lexical space of a token is the set of strings that do not
contain the line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#¥x20) and that
have no internal sequences of two or more spaces. The base type of token is normalizedString.

XML element and attribute nhames should be entirely upper case and use the underscore to separate word
boundaries. This makes the database objects easier to create and use when registering the XML schema to Oracle
XML DB.

Elements vs. Attributes

A classic question that every XML schema and DTD designer faces at some point is this: Shall | design my DTD or
XML schema modeling the data as elements or attributes? It is also a very crucial question as its answer can be the
difference between a successful future-proof design and one that fails. To illustrate this, consider the following two
fragments describing an instance of an address. The first is attribute-based:

<Address Street="123 Main St." dty="San Francisco" State="CA" Zip="94127"/>

Notice how it reads very nicely and appears to be a compact representation because there are no end tags. Now
consider the following element-based instance:

<Addr ess>
<Street>123 Miin St.</Street>
<Ci t y>San Francisco</City>
<St at e>CA<St at e>
<Zi p>94127</ Zi pcode>

</ Address>

While this version does not read left to right as conveniently, its DOM representation is not significantly larger than
the first one because both elements and attributes are nodes. More importantly, if at a later time you want to add
structure to any one of the elements, you can with the second one but not the first, because attributes cannot have
structure or be more than a simple type. An example would be where you want to support extended ZIP codes:
<Zi p>

<Code>94127</ Code>

<Ext >8522</ Ext >
</ Zi p>

Designing Element and Attribute Names

XML has the characteristic of being human-readable with no effective limit to the number of characters used in
element and attribute names. The temptation is therefore to create very explicit names, the result being an instance
document that is many times larger than the data it is conveying, as shown in this XML fragment:

<Arrivall nfo>
<Tri pCi t yTi nel nfo>
<CodeDescri pti on>
<Code>CVG</ Code>
<Descri ption>CVG - Cincinnati,OH United States - Northern Kentucky
I ntl </ Descripti on>

<Addi ti onal Dat a>Nor t her n Kent ucky Intl </Additi onal Dat a>
</ CodeDescri pti on>
<Dat e>
<Mdnt h>5</ Mont h>
<Day>21</ Day>
<Year >2002</ Year >
</ Dat e>
<Time Format ="M litary">0759</ Ti ne>
<Fli ght SearchByTi neType Type="Arriving"/>
</ TripCityTi nel nf o>
</Arrival Info>

This actual XML fragment contains 471 bytes yet only 114 bytes of data. This does add significantly to the
processing costs in both resources and time. Remember, ultimately XML is a machine-processed document;
therefore, it is important for names to be reasonable.

Loading External DTDs from a JAR File

A very convenient way to handle multiple DTDs is to put them in a JAR file, so that when the XML parser needs one
of the DTDs, it can access it from the JAR. The Oracle XML parser supports a base URL (setBaseURL()), but that
just points to a place where all the DTDs are exposed. The solution involves the following steps:

1. Load the DTD as an InputStream using
I nput Stream i s = YourCl ass. cl ass. get Resour ceAsSt rean("/f oo/ bar/your. dtd");

2. This opens .ffoo/barflyour.dtd in the relative location on the CLASSPATH so that it can be found in your
JAR.

3. Parse the DTD with the following code:

DQWParser d = new DOMPar ser ();
d.parseDTD(i s, "rootel ement nanme");
d. set Doct ype(d. get Doct ype());

4. Parse your document with the following code:
d. par se("yourdoc");

[« rreviovs [nexr s |

[revious fuecrs |
Chapter 5: XML Operations with XQuery

Overview

XQuery, or XML Query, is a query language that operates on a data model for XML documents that is based on the
W3C XML Infoset and supports W3C XML Namespaces and W3C XML Schema data types. The XQuery language
operates on XML documents or databases viewed as XML documents, thereby allowing transparent access to both
and further enabling seamless transactions on the Internet.

From the requirements set out by the user community, the XQuery functionality should be able to perform queries on
XML that are in the form of human-readable documents, data-oriented documents, mixed document-oriented and
data-oriented, administrative data, streaming data, DOM objects, native repositories and web servers, and catalogs.

This chapter will introduce the basics of XQuery, introduce the Oracle XQuery engine and describe how it interacts
with the Oracle database, and present XQuery best practices.

[« Freviovs [nexrs]

[« revious fnexr]
Introducing XQuery

XQuery is described at length in the following W3C Last Call Working Draft specifications per
www.w3.org/TR/xquery/ (referenced in a prior chapter):

m XQuery 1.0: An XML Query Language Describes how the language is an extension of XPath 2.0 and
describes in-depth the grammar and how it is processed. It describes the different expressions that are allowed
(such as primary, path, sequence, arithmetic, comparison, logical, and so on), how the expressions can be
nested, and the possible data types for the various expressions, operators, and functions. The module section
describes the main module and the prolog that can be type-checked on a stand-alone basis.

m XQuery 1.0 and XPath 2.0 Data Model Describes the data model of the XML document on which the XQuery
operators function. The data model is simply a representation of the XML document, e.g., elements, attributes,
namespaces, processing instructions, and so on, that is provided as input to an XML processor, along with how
that information is qualified in terms of data types and allowed values. This specification also describes the
different accessor functions to this information. Users do not need to concern themselves with this specification
because it is aimed at implementers of XQuery processors.

m XQuery 1.0 and XPath 2.0 Formal Semantics Describes the formal semantics of the language with a formal
notation governed by grammar productions. It complements the first specification in this list and the XML Path
Language (XPath) 2.0 specification by strictly defining the meaning of the language’s objects, such as
expressions, values, and data types, with formal notations. With this specification’s formal semantics, reference
implementations can easily be prototyped and problems with this language can thereby be eliminated. Like the
preceding specification in this list, this specification is not intended for users.

m XQuery 1.0 and XPath 2.0 Functions and Operators Introduces new functions and operators to the XPath
2.0 language and includes error, trace, constructor, strings, qualified names, context, and casting functions. It
also introduces functions and operators on the XML Schema simple data types such as humeric types and
values, Booleans, durations, dates, time, any URI, base64Binary, hexBinary, and NOTATION as well as on
nodes, and on sequences.

m XML Syntax for XQuery 1.0 (XQueryX) Maps the grammar productions outlined in the “XQuery 1.0 and
XPath 2.0 Formal Semantics” specification into XML. Thus, XML parsers and XSLT stylesheets can process,
guery, generate, modify, and reuse the XQuery operations. It makes the productions more easy for humans to
read and the queries themselves more easy to deal with.

Basics

XPath is used quite extensively in the XQuery specification, along with regular expressions, which explains the joint
data model. As mentioned in previous chapters, XPath is simply a way to select of create portions of an XML
document, and XQuery makes extensive use of this syntax inits queries and expressions. The joint data model upon
which XQuery operators operate defines the input and output of XQuery operators. This data model relies on the
concept of a sequence, which is an ordered collection, (e.g., in document order) of zero or more items, which are
defined to be a node (e.g., element, attribute, text, document, comment, Pl or namespace node), or an atomic value
that is typed via XML Schema data types (one special value is an error value). The language itself is simply
composed of keywords and such operators defined via these expressions or constructors. For example, variables,
which are prefixed by $ signs, can be used in various expressions, such as loops or assignments, or in function calls
or constructors.

Expressions

A number of expressions exist within the XQuery language, so we will concentrate on just the three that we think will
be the most heavily used:

m FLWOR expression
m Path expression
m Predicate expression

For these expressions, the following variation of the book.xml file will be used:
<book xm ns: bk="http://ww. ncgraw- hill.conm' bk: | SBN="99999-99999" >

<title>Oracl e Dat abase 10g XML and SQL</titl e>
<aut hor >
<nane bk:type="person">
<first>Mark</first>
<l ast >Scar di na</ | ast >
</ name>
<nane bk:type="person">
<first>Ben</first>
<| ast >Chang</ | ast >
</ name>
<nane bk:type="person">
<first>Ji nyu</first>
<l ast >WAng</ | ast >
</ name>
</ author >
<publi sher>Cracle Press</publisher>
<publi shyear >2003</ publ i shyear >
<price type="US">10.00</price>
</ book>

FLWOR Expression

The FLWOR expression consists of the FOR, LET, WHERE, ORDER BY, and RETURN keywords. For example,
the following code loops over all book instances, finds the respective authors, and returns result nodes containing
the book's title and the authors for each book:

<Result >

{
FCR $book in fn:doc("book.xm")/book

LET $aut hor: =col I ection('aut hor')/ $book/aut hor
WHERE count ($aut hor) >0
ORDER BY $aut hor / nane/ | ast
RETURN
<title> {$book/title} </title>
<aut hor >
{fn:string-join(($author/nane/first/text(), $author/name/last/text(),)," ")}
</ aut hor>

)

</result>

The following is the result of this XQuery:

<result>

<title>Oracl e Dat abase 10g XML and SQL</titl e>

<aut hor > Ben Chang, Mark Scardina, Jinyu Wang</ author >
</resul t>

Examining the operation of this XQuery entails the following steps:
1. The iteration is set to the <book> element by FOR and assigned to the $book variable.

2. The variable $author is assigned via LET to /<book>/<author>for all input books.

3. The predicate WHERE ensures that only books with authors are selected.

4. ORDER BY causes the results to return sorted based on the author’s last name.
RETURN defines the actual format of the result.

Note that in this case an XML document is constructed as the result in a similar fashion to the result from an XSLT
template, and we will be discussing XQuery versus XSLT in the “Best Practices” section.

Path Expression

The path expression is based on the abbreviated syntax of XPath 1.0 and is extended in 2.0 with dereference
operators and range predicates—i.e., expressions enclosed in square brackets that are often used to filter a

sequence of values. These expressions are evaluated by performing node tests on one or more steps delineated by
/ or I/ by performing a node test. There are two types of node tests. The Kind Test checks for whether the type of
XML item is either an ElementTest,Attribute Test,PITest,CommentTest, TextTest or AnyKindTest. The Name Test
adds the further qualification of matching the QName as well. For example, the following are several node tests:

El ement (chil d:: book) — matches all child el enents of book

El ement (chi | d:: / book/aut hor/ name, person) — matches all names of child el enent,

aut hor, of type person

Attribute() — matches any single attribute node regardless of nane

Attribute(/book/ @k:1SBN) - matches all book elements containing ISBN attributes
in the XML nanespace associ ated with the br prefix.

Predicate Expression

The predicate expression can be used to identify certain nodes (e.g., the expression starting with title used in
book[title="Oracle Database 10g XML and SQL"]),to help determine values (e.g., the expression price in
book[price> 10] or book[price —10]),or to determine the ordinal position (such as book[5]).

Query Prolog

The query prolog, along with the query body, comprises an XQuery query. It contains constructs such as
namespace declarations, function and variable definitions, and module imports such as XML Schema imports. The
guery body thus references the constructs defined or declared in the query prolog, and utilizes the aforementioned
expressions to determine the result of an XQuery query. Some of the other constructs mentioned in the XQuery
specification that are contained in the query prolog are version declaration, validation declaration, default
namespace declaration, xmlspace declaration, and default collation.

With a namespace declaration in the query prolog, a prefix can be used in qualified names to differentiate names of
elements, attributes, etc. For example,

decl are namespace bk = "http://ww. oracle. conf book"

can be used to uniquely define an element <mybook> as in the qualified name <bk:mybook>. A default
namespace declaration could also be made to apply to all unqualified elements, attributes, etc., such as:

decl are default namespace el enent nanespace bk = "http://ww. oracle. com book"
without which these unqualified elements, attributes, etc., would be considered to be in no namespace.

In addition to namespace declarations, the query prolog can also contain function definitions that can be called
within the query body. The function definition consists of the function name, with an optional prefix, preceded by
thedefinefunction keyword and followed by a parameter list and the expressions that make up the function body.
For example, in

decl are default nanmespace el ement namespace bk = http://ww oracl e. conl book
define function bk: get booknane($node) {

| et $name : = $node/ booknane

return $nanme

}

the function name is bk:getbookname, which contains the namespace prefix to prevent it from colliding with other
getbookname functions. It takes a node as a parameter, and in its body it creates a return variable, $name, that is
used to return the <bookname>nodes that are children of the passed-in node.

Finally, the import keyword can be used in the query prolog to include other bodies of definitions, such as XML
schemas, which can then be referenced in the query body. For example,

i nport schema nanespace nybook=http://ww. ncgrawhi || . com’ book
at "http://xmns.ncgraw- hill.com mybook. xsd"
decl are default nanmespace el ement namespace bk = http://ww oracl e. coml book
define function bk: get booknanme($node) {
| et $name : = $node/booknane
return $nanme

}

Introducing XQueryX

XQueryX is simply an XML representation of an XQuery query. The XQueryX specification maps the grammar
productions outlined in the XQuery 1.0 and XPath 2.0 Formal Semantics specification into XML. Thus, using XML
parsers you can process, query, generate, modify, and reuse the XQuery expressions. It enables XML processes
such as XSLT stylesheets to generate productions. At the time of this writing, this specification is undergoing
significant rewriting and thus may not exit the W3C process as it currently stands. We mention it here for
informational purposes because the Oracle XQuery prototype discussed in the following section supports the original
syntax.

To give you a specific example of how the XQuery XML looks, the following FLWOR expression is transformed from

FCR $b I N docunent (" book.xm ")/ /book
WHERE $b/ publisher = "Oracle Press" AND $b/year = "2003"
RETURN

$b/title

to the following XML representation:

<g: query xm ns: g="http://ww. w3. or g/2001/ 06/ xquer yx" >
<q: flwr>
<g: f orAssi gnnment variabl e=" $b" >
<(Q: st ep axi s=" SLASHSLASH" >
<qg: function name="docunent" >
<Q: const ant datat ype="CHARSTRI NG' >book. xm </ g: const ant >
</qg: functi on>
<qg:identifier>book</q:identifier>
</ q:step>
</ q: f or Assi gnhnment >
<Q: wher e>
<qg: functi on name="AND" >
<qg: function name="EQUALS'>
<Q: step axis="CHI LD >
<Q: vari abl e>$b</ q: vari abl e>
<Qg:identifier>publisher</qg:identifier>
</ q:step>
<(: const ant datat ype="CHARSTRI NG' >Or acl e Press</ g: const ant >
</q: functi on>
<qg: function name="EQUALS'>
<q: step axis="CHI LD >
<q: vari abl e>$b</ g: vari abl e>
<g:identifier>year</q:identifier>
</ qg:step>
<(: const ant datat ype="CHARSTRI NG' >2003</ ¢: const ant >
</q: functi on>
</ q:function>
</ q: wher e>
<g: return>
<(Q: step axis="CHI LD >
<q: vari abl e>$b</ g: vari abl e>
<g:identifier>title</q:identifier>
</ q:step>
</q:return>
</q:flw>
</q: query>

[« rreviovs [ecr s |

[« revious fnexr]
The Oracle XQuery Engine

The Oracle XQuery engine is a prototype implementation of the evolving XQuery language, with Oracle extensions.
Written in Java, the engine can be invoked via its OJXQI Java API, or via its XQLPlus command-line utility. This
engine can be used either within the Oracle database or outside, as in a web application server or client. The only
other requirements are Oracle XDK 9i or above, an associated JDBC driver, and JDK 1.3. This prototype is based
on the November 15, 2002 draft of the specification.

Setting Up the Environment

On Windows platforms, xq.zip needs to be downloaded and unzipped. The directory contains the JAR file,
xquery jar, an example XQuery file and XML file, and a Javadoc directory. The next step is to include in your
CLASSPATH the location of this JAR and the JARs in the Oracle XDK, along with your desired JDK or JRE.

Similarly, on UNIX platforms, the xq.tar.gz file needs to be downloaded, unzipped, and extracted; and the
CLASSPATH needs to be set properly. These distributions contain the same files and can also be used on any
Oracle-supported platform with the appropriate port of the JDK or JRE.

Testing Your Installation

On both Windows and UNIX platforms, in order to test the installation, after you make sure the CLASSPATH has
been set correctly, run XQLPIlus via the following command:

java oracle.xquery. XQPl us exnpl 1. xql

This will process the following XQuery contained in exmpl1.xql:
<bi b>
{
FCR $b I N docunent ("bi b. xm ")/ bi b/ book
WHERE $b/ publi sher = "Addi son-Wesl ey" AND $b/ @ear > 1991
RETURN
<book year="{ $b/ @ear }">
{ $b/title }
</ book>

}
</ bi b>

The preceding query parses bib.xml, iterating over all the <book> elements that it has assigned to the $b variable.
For each<publisher>element, it attempts to match the string value as well as a numeric comparison against the
yearattribute. For each entry that satisfies both conditions, it creates an XML output of the title and year published.
The matched portion of bib.xmland the result is as follows:
<bi b>
<book year ="1994" >
<title>TCP/IP Illustrated</title>
<author ><l ast >St evens</l ast><first>W </ fi rst >/ aut hor>
<publ i sher >Addi son-Wesl ey</ publ i sher >
<price> 65.95</price>
</ book>
<book year ="1992" >
<titl e>Advanced Programmi ng in the Unix environment</title>
<aut hor ><| ast >St evens</| ast><first>W </ first></aut hor>
<publ i sher >Addi son-Wesl ey</publ i sher >
<price>65.95</ price>
</ book>

</ bi b>
Resul t

<bi b>
<book year ="1994" >

<title>TCP/IP Illustrated</title>
</ book>
<book year ="1992">
<title>Advanced Programm ng in the Unix environnent</title>
</ book>
</ bi b>

Note that the file being queried, bib.xml, is in the query itself and is not passed on the command line.

[erevous Jrecrs

[« revious fnexr]
Querying XML Documents

Using the Oracle XQuery engine, it is quite simple to query XML documents either interactively via the command line
or programmatically.

Running in Interactive Mode

XQLPlus can be run in interactive mode in the same way as SQLPIus. In fact, where appropriate, it uses the same
commands. To run XQLPIlus in interactive mode, invoke the following command:

java oracle. xquery. XQPI us

Then, an XQuery can be entered from the XQL prompt, terminated by /, or a script invoked via @exmpl. Typing
help returns the following:

XQuery Command Line Tool

Enter XQuery statenents foll owed by /;

To execute queries ina file fromthe XQ pronpt, enter @followed by
the <fil eNane>

To execute queries ina file fromthe shell pronpt, enter

java XQLPlus <fileNanme>

Set command hel ps set envi ronment vari abl es:

set sqgl conn def aul t =<j dbc- connect - stri ng>

set sqgl conn <name> =<j dbc- connect -stri ng>

set echo (ON | OFF)

set timng (ON| OFF)

set var <vari abl e nane> <val ue>

set print_plan (ON | OFF)

Querying XML from the Command Line

In addition to interactive mode XQLPlus can be invoked with arguments:
java oracle. xquery. XQueryContext —xqgfile /private/exnmpll. xql

These can be the XQuery file containing the query, an optional base URL to be used when accessing filenames
inside document functions in the XQuery, and optional debug features. For example:

java oracle. xquery. XQuer yContext —xqgfile /private/exnpll. xql
—baseurl /private —debug

Querying XML with XQueryX

The XQueryX XML file can also be run from the XQLPIlus engine via
java oracle.xquery. XQLPlus @oo0.xm

or at the command-line prompt after invoking XQLPlus.

[« previous [et s

[« Freviovs [nexrs]

XQuery and the Oracle Database

The Oracle XQuery engine enables you to connect to the Oracle database and execute XQuery queries over the
data stored in the database, the result sets of which are returned via an XQueryResultSetObject object. This
capability is made possible through Oracle extensions that allow the execution of XQuery expressions over
traditional database tables viewed as XML. Hence, the power of XQuery has been significantly enhanced with the
Oracle implementation.

XQuery APl for Java

0JXQIl is the Java API for XQuery proposed by Oracle, and includes various extensions that Oracle supports for
connecting to the database and binding variables, among other things. OJXQI provides an XqueryResultSet class
that can be used to obtain the results of executing the XQuery.

To use OJXQI, you first need to construct a context. To do so, use the default constructor or pass in the connection
information, prepare an XQuery or XQueryX statement by calling prepare XQuery() or prepareXQueryX(),
respectively, bind any values to the return object of these calls, PreparedXQuery, execute the PreparedXQuery
object, and then iterate over the XQueryResultSetObject. The following code fragment illustrates this:

XQueryContext ctx = new XQueryContext();
try {
/'l create a string fromthe file
Reader strm = new Fil eReader (" exnmpl 1. xqgl ");
/'l prepare the query
PreparedXQuery xgq = ctx.prepareXQuery(strn);
/1 get a resultset
XQueryResul t Set rset = xqg. executeQuery();
while (rset.next()) {
/1 get result nodes
XM.Node node = rset. get Node();
Systemout. println(" NODE "+ node. get NodeNane());
node. pri nt(Systemout);

}

}
catch (Exception e) {

/1 do sonet hing. .

}

A number of Oracle enhancements were made to support embedding SQL inside XQuery queries, to support bind
variables so that the XQuery query is not re-executed, and to support XMLType.

Querying XML in the Database

Invoking the methods defined in OJXQI in a Java program enables you to query the database using XQuery
expressions and operators. For example, the following XQuery will return the results of all the names and titles from
an author table:

FCR $i IN sql query("select * from booklist.author"/ROW
RETURN

$i / NAME,

$i / TITLE

The code to convert that to a Java program would look something like this:

/1 get the connection

Dri verManager .regi sterDriver(new oracl e.jdbc.driver. O acleDriver());

Connecti on conn = Driver Manager.get Connection("j dbc:oracle: @, "scott", "tiger");
/] create the context using that connection

Xquer yContext ctx = new XQueryCont ext (conn);

/1 create a string fromthe file

Reader strm = new StringReader ("For $i IN sql query(\"select * from
booklist.author\"), "+ " RETURN $i/NAME, $i/TITLE");

/'l prepare the query

PreparedXQery xq = ctx. prepareXQuery(strm;

/'l get a result set

Xquer yResul t Set rset = xq.executeQuery();

while (rset.next()) {
XM_.Node node = rset. getNode();
System out. println(" NCDE "+ node.get NodeNare());
Node. print (System out) ;

}

[« Frevious Jiecr |

[« Freviovs [nexrs]

Best Practices

Obviously, since XQuery has not been finalized, there is little user experience with it. However, we feel there is value
in comparing its functionality with two alternative technologies—XSLT 2.0 and SQL/XML. Oracle Database 10g has
implementations of both of these technologies.

XQuery Versus XSLT 2.0

XSLT is a mature language that has Oracle implementations in Java, C, and C++ as well as SQL access. XSLT 2.0,
as discussed in Chapter 3, is incorporating more functionality, including support for data types and XPath 2.0.
XQuery, which also uses XPath 2.0, is also still brewing even as this is being written, and as seen from the
examples supports similar functionality. Therefore, the following are legitimate questions: Do we need both XSLT
and XQuery? and Are there advantages of one over the other?

Since XSLT is a function-based language in which each template needs to be evaluated against the entire
document, its processing model is considered recursive. This can produce less-than-optimum performance when
processing large documents, not only because XSLT processors require an in-memory representation of the entire
document, such as DOM, to traverse, but also because the frequent XPath traversals reduce throughput of the
processing.

XQuery, on the other hand, while still using XPath, is neither function-based nor recursive. Therefore, its processing
model can be optimized by compiling the queries, potentially producing more efficient processing. However, XQuery,
without XQueryX, is not an XML syntax, thus limiting its integration into an XML processing stack.

Finally, between the work being done to compile XSLT stylesheets and the fact that few XQuery implementations
exist due to the standard’s draft status, the verdict is still out as to whether both will find a niche or one will prevail.

XQuery Versus SQL/XML

In the case of XQuery versus SQL/XML, they are two emerging standards that can be considered to be competing
for the same function space. We will be discussing SQL/XML in detail in later chapters because its functionality is
included in Oracle Database 10g. Of particular note is that SQL/XML depends on SQL for its datatype support and
not XML Schema. Thus, as its name implies, SQL/XML integrates XML processing with SQL and therefore would be
the technology of choice for SQL environments or when you need to mix table-based, structured data with XML or
document data.

On the other hand, XQuery is designed for an XML environment where a database is not a required component.
While it will access collections of documents, it does not depend on any particular repository model. It is also
designed to work with XML Schema data types. Therefore, taking into account the XSLT issues, XQuery will
generally be the choice where your XML processing doesn't have access to or will not benefit from a SQL engine
and requires XML Schema support.

[« Frevious Jiecr |

[revious fuecrs |
Chapter 6: XML Messaging and RPC with SOAP

The Oracle E-Business Suite of applications offers companies a new and better way to conduct business. The E-
Business Suite combines customer relationship management (CRM), supply chain management, and internal
operations as a fully integrated solution. The Oracle E-Business XML Services component, which is available in
release 11.5.6 of Oracle Applications, provides a framework and system infrastructure for deployment, management,
and run-time execution of XML Services, the foundation for developing a new generation of Web-enabled e-
business applications. Central to this notion of XML Services is the concept of XML messaging based on SOAP,
which underlies the communication of these applications via their key integration points (for example, XML Services,
how XML Services are invoked, what events trigger them, and how event subscribers are able to handle them).

Introducing SOAP

The Simple Object Access Protocol (SOAP) is a lightweight, XML-based protocol for exchanging information in a
decentralized, distributed environment. SOAP consists of three parts:

m The SOAP Envelope, which defines an overall framework for expressing what is in the message, who should
process the message, and whether the processing is optional or mandatory.

m A set of encoding rules for expressing instances of application-defined data types. These rules define a
serialization mechanism that converts the application data types to XML and vice versa.

m A SOAP remote procedure call (RPC) convention for representing remote procedure calls and responses.

The major design goal for SOAP is simplicity and extensibility. SOAP has a looser coupling between the client and
the server than some similar distributed computing protocols, such as Common Object Request Broker
Architecture/Internet Inter-ORB Protocol (CORBA/IIOP). All this makes the protocol even more compelling. SOAP is
transport protocol independent and thus can be used with any transport protocol. At the same time, when used with
HTTP for remote service invocation over the Internet, SOAP emerged as a de facto standard for delivering
programmatic content over the Web. SOAP 1.2 became a W3C recommendation in June 2003; however, the Oracle
XFK 10g implementation is based on SOAP 1.1, which is a W3C note.

Since SOAP is XML based, it is platform and operating system independent. It supports communication between a
client and server that use different programming languages. SOAP requests are easy to generate, and a client can
easily process the responses. By using SOAP, one application can become a programmatic client of another
application's services, with the two applications exchanging rich, structured information. SOAP provides a robust
programming model that creates the possibility to aggregate powerful, distributed web services (such as XML
services) to turn the Internet into an application development platform of the future.

Literal, Encoded SOAP Messages

The SOAP specification describes a standard, XML-based way to encode requests and responses, including:
m Requests to invoke a method/function as a service, including in parameters
m Responses from a service method/function, including return value and out parameters
m Errors from a service

An illustration of a SOAP message format appears in Figure 6-1.

SOAP Envelope

SOAP Header

SOAP Body

Payload Document(s)

SOAP Fault

Figure 6-1: SOAP message format

Basically, the message itself is the key for a SOAP message; the payload is encoded in XML and has no knowledge
of processing, while the header may contain processing details.

Consider the following example: a GetLastTradePrice SOAP request is sent to a StockQuote service. The request
takes a string parameter, the company ticker symbol, and returns a float in the SOAP response. The XML document
represents the SOAP message. The SOAP Envelope element is the top element of the XML document. XML
namespaces are used to disambiguate SOAP identifiers from application-specific identifiers. The example uses
HTTP as the transport protocol. The rules governing XML payload format in SOAP are entirely independent of the
fact that the payload is carried in HTTP (because SOAP is transport independent). The SOAP request message
embedded in the HTTP request looks like this:

PCST /St ockQuote HTTP/ 1.1

Host: www. st ockquot eser ver. com

Cont ent - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: nnnn

SQAPAct i on: " Sonme- URI"

<SOAP- ENV: Envel ope xmnl ns: SOAP- ENV="ht t p:// schenas. xm soap. or g/ soap/ envel ope/ "
SQAP- ENV: encodi ngSt yl e="ht t p:// schemas. xnml soap. or g/ soap/ encodi ng/ ">
<SOAP- ENV: Body >
<m Get Last TradePri ce xm ns: m="Sone- URI " >
<synbol >ORA.</ synbol >
</ m Get Last Tr adePrice>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

What follows is the response HTTP message containing the XML message in SOAP format as the payload:

HTTP/ 1.1 200 K
Cont ent - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: nnnn

<SOAP- ENV: Envel ope xm ns: SOAP- ENV=htt p: // schemas. xm soap. org/ soap/ envel ope/
SQAP- ENV: encodi ngSt yl e="ht t p:// schemas. xm soap. or g/ soap/ encodi ng/ "/ >
<SOAP- ENV: Body >
<m Get Last TradePri ceResponse xnl ns: me"Some- UR " >
<Price>34.5</ Price>
</ m Get Last Tr adePri ceResponse>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

One-Way and Two-Way SOAP Messaging and RPCs

The preceding example is an example of two-way SOAP messaging in that both the request and response are
encapsulated in SOAP messages. A one-way SOAP message is one that simply sends out a request or a message,
without needing an acknowledging SOAP message in return. In addition, SOAP allows the encapsulation and
exchange of RPCs and responses.

Using SOAP for RPCs is not limited to HTTP requests and responses. In order to invoke a method, the following is
needed:

m A method name
= An optional method signature
m The parameters to the method
m The URI of the target object
m Optional header data
The method calls and responses are embedded in the SOAP Body using the following representation:
m The method invocation is a data structure whose name and type is the same as the method name.

m The data structure contains fields that act as accessors for each parameter of the method, each of whose
name, type, and order are the same as in the method signature.

m The method response is also a data structure, similar to the data structure that models the data invocation,
except that the name is typically name_Response and the first accessor is the return value.

= A method fault is encoded in the SOAP Fault section.

If additional information relevant to the encoding of a method request exists, it must be expressed within the SOAP
Header section. For example, an alternative book ID may be embedded in the SOAP Header when passing along a
SOAP message concerning the sale of a book, since this book ID would not be part of the method signature and
can be extracted from the header by code on the receiving side.

[« rreviovs [ecr s |

[« revious fnexr]
Using SOAP and the Oracle XDK

XML Services included in Oracle XDK 10g uses the Oracle SOAP implementation that is part of Oracle AS 10g
version 9.0.4 as its SOAP run-time engine, which is part of the Oracle XDK. The Oracle SOAP implementation is
based on the Apache SOAP implementation and is SOAP 1.1. Therefore, the XML Services are SOAP services and
can be invoked by any SOAP-compatible client, the description of which follows.

SOAP Client

The SOAP client must perform the following steps:
1. Gather all parameters that are needed to invoke a service.

2. Create a SOAP service request message. This is an XML message, built according to the SOAP protocol,
that contains all of the values of all input parameters encoded in XML. This process is called serialization of
the parameters.

3. Submit the request to a SOAP server using some transport protocol that is supported by the SOAP server.
4. Receive a SOAP response message.
5. Determine the success or failure of the request by handling the SOAP Fault element.
6. Convert the returned parameter from XML to a native data type. This process is called deserialization.
Use the result as needed.

To enable you to avoid dealing with XML and SOAP at a very low level, a number of SOAP clients are available that
will do most of this work for you. To facilitate easy application development and to insulate the application
developers from all details of using SOAP, XML Services includes a SOAP client API. This API provides an easy
way to invoke SOAP services from the XML Services framework. The XML Services SOAP client API supports a
synchronous invocation model for requests and responses.

SOAP Server

Any SOAP server follows the following general steps while executing a SOAP service request:
1. The server receives the service request.

2. After parsing the XML request, the server must decide whether to execute the message or reject it.
3. Ifthe message is to be executed, the server finds out if the service that is requested exists.

4. The server converts all input parameters from XML into data types that the service understands.

5. The server invokes the service.

6. The server converts the return parameter to XML and generates a SOAP response message.

The server sends the response message back to the caller.

SOAP Handlers

A SOAP handler is simply a mechanism that is used to intercept the SOAP message to do either pre- or post-
processing as indicated by the SOAP request or response. These can be used onthe client or server side, or both,
and can add additional features to XML services, such as security, error handling, and so forth. For the Java
language binding, all SOAP handlers live in the package namespace user.soap.handlers hierarchy.

An example of such a handler would be the following in a SOAP XML configuration file:

<osc: handl er s>
<osc:handl er nane="book" cl ass="opress.soap. handl er s. book. BookLogger ">
<osc: opti on name="BookLogDir ect ory"
val ue="/pri vat el/ opress/ app/ product/tv02/ soap/ webapps/ soap/ VEB- | NF"/ >
<osc: opti on nane="filter" val ue="(!(host=local host))"/>

</ osc: handl er>
</osc: handl er s>
<osc: request Handl er s names="book"/ >
<osc: responseHandl ers nanes="book"/ >
<osc: errorHandl ers names="book"/>

[« revious fnexr]
Using SOAP and the Oracle Database

Using the Oracle Database with SOAP as the underlying messaging protocol to queue and operate on messages
from applications working on top of the database allows all the traditional features, such as performance, scalability,
security, high reliability, and recoverability, to be associated with such messages. In addition, an Oracle Advanced
Queuing (AQ) servlet allows clients to interpret and communicate with the back-end database to extract information
and to retrieve, update, enqueue, and dequeue these messages, which are stored in message queue tables in the
database.

Finally, allowing AQ messages in SOAP format and the XML-based Internet Data Access Presentation (iDAP)
formats allows transformation, extraction, and other standards-based operations associated with XML to occur.

Oracle Streams AQ Support

Oracle’s AQ acts as the hub for either native XML or XML defined using iDAP, meaning that such messages can be
sent over HTTP or SMTP protocols. In either case, clients such as browsers and servers such as Oracle can
communicate through enqueue, dequeue, publish, and register functionality encapsulated by Oracle-specific tags
such as AQXMLSend,AQXMLReceive,AQXMLPublish,AQXMLRegister, AQXMLReceiveResponse,
AQXMLPublishResponse, AQXMLNotification, and along with other required elements. For example, a client can
construct the following iIDAP XML message and send it over HTTP to be processed by Oracle:

<?xm version="1.0"?7>
<Envel ope xm ns=http://ww. oracl e. conf schenas/| DAP/ envel ope>

<Body>
<A@XM.Send xm ns=http://ww. oracl e. com schemas/ AQ access>
<l-- nandatory -->

<pr oducer _opti ons>

<! --mandatory -->

<desti nati on>BOKLI ST. BOOK_QUEUE</ dest i nati on>
</producer_options>

<!I— nandat ory
<nessage_set >
<message>
<message_nunber>1</nmessage_nunber >
<! — mandatory -->

<nessage_header >
<correl ati on>BOOK</ correl ation>
<sender _i d>
<agent _name>Juan</ agent _nane>
</sender _i d>
</ message_header >
<nmessage_payl oad>
<Book>
<Title>Introducing XML.</Titl e>
<Aut hor _Lastname>Smi t h</ Aut hor _Last name>
<I SBN>11- 0342000123</ | SBN>
</ Book>
</ message_payl oad>
</ message>
</ message_set >
</ AQXM_Send>
</ Body>
</ Envel ope>

In this manner, messages can be intelligently managed, so that data about them can be extracted at a later point to
help in configuring the architecture and viewing the messages through SQL.

AQ Servlet

Oracle Advanced Queuing (AQ) is a database facility that provides an integrated message queuing capability,
enabling and managing asynchronous communication between applications using Oracle messaging formats. The

AQ servlet is simply a servlet that operates in the middle tier that acts on AQ messages in both SOAP format and
the IDAP format, a format that uses XML for the data representation and HTTP and e-mail protocols as the transport
mechanism. The servlet then can interpret the incoming message from the client and communicate back to it, and
can connect to the Oracle database from the middle tier to perform operations on the message queues.

Enqueuing and Dequeuing Messages

To begin with, Oracle message queues can be created with messages that contain XML messages—these are
encapsulated by the XMLType data type. To do this, a queue table is created using the
dbms_aqadm.create_queue_table call, with the queue_payload_type as SYS.XMLType; the table can be
populated via the dbms_aqgadm.create_queue call. For example, a book order queue table and a queue with
different priorities could be created in PL/SQL via the following code.

BEG N

EXECUTE dbns_agadm creat e_queue_t able (

queue_t abl e => ' book_order_tabl e,
sort _|ist => ' book_order, 'ship_book_order',
conment => ' book order nessage queue table',
mul tiple_consumers => TRUE,
queue_payl oad_t ype => ' SYS. XM_Type',
conpati bl e = '8.1",
primary_instance => 2,
secondary_i nst ance = 1);
END;
BEG N

EXECUTE dbms_agadm creat e_queue (
gueue_nane => ' book_order_queue',
queue_t abl e => ' book_order_table);
END;
To enqueue a message using SOAP, the following could be an XML representation of the message:
<?xm version="1.0"?>
<Envel ope xm ns=http://schenas.xmnl soap. or g/ soap/ envel ope/ >
<Body>
<AQXm Send xm ns=http://ns.oracl e. comi AQ schemas/ access>
<pr oducer _opti ons>
<desti nati on>book. book_or der _queue</ desti nati on>
</producer_options>
<nmessage_set >
<message_count >1</ nessage_count >
<message>
<nmessage_nunber >1</ message_numnber >
<nmessage_header >
<correl ati on>order 1</correl ati on>
<priority>l</priority>
<sender _i d>
<agent _nane>JuanL</ agent _name>
</sender _i d>
</ message_header >
<nmessage_payl oad>
<BOOKORDER_TYPE>
<BOOKCRDER>5</ BOOKORDER>
<BOOKCRDER_SHI P>5</ BOOKORDER_SHI P>
<BOOKQUSTQVER>
<BOOKCUSTOMER_| D>99999999</ BOOKCUSTOMER_| D>
<BOOKCUSTOMER _LASTNAME>Loai za</ BOOKCUSTOMER LASTNAMVE>
<BOOKCUSTOMER_STREET>1 Or acl e Parkway</ BOOKCUSTOMVER_STREET>
<BOOKCUSTOMER_Q TY>Redwood Shor es</ BOOKCUSTOMER CI TY>
<BOOKCUSTOMER_STATE>Cal i f or ni a</ BOOKQUSTQVER_STATE>

<BOOKQUSTQVER ZI P>94065</ BOOKCUSTOVER _ZI| P>
<BOOKQUSTAVER_COUNTRY>USA</ BOOKQUSTAQVER_COUNTRY>
</ BOOKQUSTQVER>
<BOOKTI TLE>Or acl e and XM.</ BOXKTI TLE>
<BOOKI D>3333333333333</ BOXKI D>
<BOOKPR CE>49. 99</ BOOKPRI CE>
</ BOOKORDER_TYPE>
</ message_payl oad>
</ message>
</ message_set >
<AQXm Conmi t/ >
</ AQXM Send>
</ Body>
</ Envel ope>

To dequeue a message using SOAP, the following could be an XML representation of the message:

<?xm version="1.0"?>
<Envel ope xm ns=http://schemas. xm soap. or g/ soap/ envel ope/ >
<Body>
<AQXM Recei ve xm ns=http://ns.oracl e.com AQ schemas/ access>
<consumer _opti ons>
<desti nati on>book. book_or der _queue</ desti nati on>
<consumer_name>JuanlL</ consumer _nane>
<wait_tinme>0</wait_time>
<sel ect or>
<correl ati on>order 1</ correl ation>
</ sel ect or >
</consuner_opti ons>
<AQXm Comm t />
</ AQXm Receive>
</ Body>
</Envel ope>

Using SOAP from PL/SQL

PL/SQL Java stored procedures that encapsulate SOAP services are invoked in exactly the same manner as any
other Java stored procedure. The SOAP JAVA jar file created during the translation/deployment of a PL/SQL
package is also needed on the client side to compile application programs that invoke the SOAP service. As in the
example given above, the basics are to declare a set of variables to represent the request and the response, and to
declare the XMLType that would represent the message itself. Since this is more RPC-style, PL/SQL functions
would be created to build a SOAP message body and envelope, build a SOAP request to invoke a web service,
invoke the web service, process any SOAP faults or exceptions, and possibly extract information from the returned
SOAP message.

[« erevious [necrs]

[« Freviovs [nexrs]

Best Practices

Web services are simply XML services that are shared by and used as components of web-based applications.
Depending on different technologies, scenarios, and computer configurations, these services can reside on
dissimilar computers and can be accessed and transported using different standard protocols. Though these
protocols are different, these services are made interoperable because XML is the language used as the message
format, the services themselves can be encapsulated via XML, and the services can be accessed on the Internet
from the different applications. The following sections will go over some alternative mechanisms for transporting
messages.

SOAP vs. JAX-RPC

Java API for XML-based RPC (JAX-RPC) is a Sun Microsystems Java Specification Request (JSR) that specifies
the client API for invoking a web service. The java.xml.rpc interfaces consist of the main client interface, the factory
class for creating the main client interfaces, the client proxy for invoking the operations of a web service, the call
interface used to dynamically invoke a web service, and an exception class that is thrown if a web service error
occurs. This specification is more interface-driven, i.e., methods, parameters, return values, and synchronous,
meaning that the client waits for the response; in short, more RPC-style.

SOAP vs. JMS

Java Message Service (JMS)—or message Enterprise Java Beans (EJBs)—is more message-style than SOAP, in
that it’s more message-based and asynchronous and involves sending or receiving an XML document. Inherently,
with the use of EJBs, the traditional facilities of persistence, security, transactions, and concurrency are available
with these messages. Essentially, two types of operations exist with JMS: operations that send data and operations
that receive data. JMS can send messages to the JMS destination, which then forwards it on the client, and IMS
can also receive messages from the JMS destination that received a message from the client.

These operations contrast with SOAP in that there needs to be a Java-compatible JMS client receiving these
messages, whereas the SOAP message is platform independent and can support a broadcast protocol that doesn’t
depend on getting responses.

[« Freviovs [et |

[« Freviovs [nexrs]

Chapter 7: Putting It All Together with XML Pipeline, JSPs,
and XSQL

XML processinghas evolved quite a bit over the last few years. Previously, XML application developers needed to
come up with quite a bit of code to parse an XML file, apply a stylesheet to it, and transmit the results. With the
acceptance of XML in modern business applications, the demands on the processing infrastructure to access and
exchange business data in the form of XML also grew; and associated with that growth came even higher
application development and maintenance cost.

To reduce this cost, Oracle XML Developer's Kit 10g (XDK) extends and supports XML standards and introduces
new processing technologies and features that simplify XML creation, access, transformation, and validation. With
these new mechanisms, XML application developers can more easily process XML within their business-to-business
(B2B), business-to-customer (B2C), and Enterprise Application Integration (EAI) applications. This chapter explains
how the XML Pipeline Processor, JSPs, and the XSQL Servlet enable Oracle XML application developers to achieve
this goal of greatly reducing the complexity of today's XML processing.

Introducing the XML Pipeline Processor

The XML Pipeline Processor establishes a reusable component framework that supports declarative pipelining of
XML resources so that different processes, such as XML parsing, XML schema validation, and XSL transformations,
can be performed for an application within this framework. Compliant with the W3C XML Pipeline Definition
Language Version 1.0 Note (http://www.w 3.0rg/TR/2002/NOTE-xml-pipeline-20020228/), Oracle’s implementation
of this processing framework allows developers to avoid dealing with all of these different process interfaces
individually, in a sense “pipelining” the processing of XML in one module.

To begin with, an XML document detailing this pipeline must be created according to the rules specified in the W3C
Note. For the XML Pipeline Processor to act upon it, the use of the available XML processing components and the
inputs and outputs for these processes must be established in this document. For Oracle’s XML Pipeline Processor,
these available components include the DOM and SAX XML parsers for parsing the XML documents, the XML
Schema Processor for the XML schema validations, the XSL Processor for transforming XML documents,
SAXSerializer for printing XML, and the XML Compressor to compress XML into binary format.

Put simply, the XML Pipeline Processor executes the chain of XML processing according to the descriptions in the
pipeline document and returns a particular result. The following is an example of an XML Pipeline document that
performs an XSLT transformation of book.xmlusingbook.xsl and producing booklist.html:

<pi peline xm ns=http://ww. w3. org/ 2002/ 02/ xm - pi peline
xm :base="http://exanple.org/">
<par am nane="t arget" select="booklist.htm"/>

<pr ocessdef name="donparser.p"
definition="oracle.xni.pipeline.processes. DOVWPar ser Process"/ >
<pr ocessdef nane="xsl styl esheet. p"
definition="oracle.xni.pipeline.processes. XSLStyl esheet Process"/ >
<pr ocessdef name="xsl process. p"
definition="oracle.xm. pi peline.processes. XSLProcess"/>
<process id="p2" type="xsl styl esheet. p"
<i nput nane="xsl" | abel ="book. xsl "/>
<out par am name="styl esheet" | abel ="xsl style"/>
</ process>

i gnore-errors="false">

<process id="p3" type="xsl process.p" ignore-errors="fal se">
<par am nane="styl esheet" | abel ="xslstyle"/>
<i nput name="docunent" |abel ="xm doc"/>
<out put name="result" | abel ="booklist.htm"/>

</ process>

<process id="pl" type="donparser.p" ignore-errors="true">
<i nput name="xm source" | abel ="book.xm "/>

http://www.w3.org/TR/2002/NOTE-xml-pipeline-20020228/

<out put nane="donl' | abel ="xnm doc"/ >
<par am name="pr eser veWi t espace" sel ect ="t rue" ></ paranp
<error nanme="doni >
<htm xm ns="http://ww/ w3/ org/ 1999/ xhtm ">
<head>
<title>DOWParser Failurel</title>
</ head>
<body>
<h1>Error parsi ng docunent </ hl>
</ body>
</htm >
</error>
</ process>
</ pi pel i ne>

Note that any error is returned as an HTML document, which is consistent with the output format.

Multistage XML Processing

Multistage XML processing is quite straightforward, allowing processing of XML components in parallel and at
different stages. Thus, the output from processing an XML document can immediately act as one input or multiple
inputs to other stages of processing XML. All of this multistage XML processing is encapsulated within an XML
Pipeline document.

Parsing, then Validation, then Serialization or Transformation

When users need to process and access XML data, the first step is to parse the XML document by using an XML
parser. XML parsers are the components that read in XML documents and provide the programmatic access to the
content and structure of XML. Depending on whether the structure of the document is governed by a DTD or an
XML schema, the validating parser performs the checking operations necessary during the parsing. In Oracle’s Java
XML Schema Processor, a lax validation mode also exists, in addition to the strict validation mode, whereby
synchronous retrieval of the metadata information and the validation processing status from the XML Schema
Processor during the SAX XML parsing can occur.

The management of handlers for SAX events streaming from XML SQL Utility (XSU) output after SQL queries return
rowset data is greatly simplified with a new Java interface, oracle.xml.parser .v2.SAXSerializer, which provides
output options to specify if the pretty printing format is needed, what the XML declaration and encoding information
is, which if any are the elements whose content needs to be set as CDATA sections, and what the DTD system-id
andpublic-id are. To use this new feature, you simply use it as another type of SAX content handler. For example,
you can register it to the XSU's SAX output interface as follows:

Oracl eXM_Query. get XMLSAX(sanpl e);

This generates unbounded XML documents from result sets returned from queries, with warnings or errors reported
either as processing occurs or at the very end of the processing.

Alternatively, XSL Transformation (XSLT) stylesheets can then be applied to either the streaming XML data or the
input XML documents to transform and apply formatting semantics on the text output.

SAXvs. DOM

SAX parsing is event-based XML parsing, meaning that when certain events occur or are encountered when
processing the XML document—for example, when the root node of the document is encountered—the event
handlers or functions, startDocument for this example, are then invoked through function callbacks. Compared to
DOM parsing, SAX is much faster and less memory-intensive in that an in-memory tree representation is not
constructed. For multistage XML processing, this lightweight XML parsing is ideal when you need to filter and search
from large XML documents, but the drawbacks are that the XML content cannot be changed in place and dynamic
access to the contentis not as efficient as with DOM. In the case of the current Pipeline Processor implementation,
the SAX Parser can be connected to the XML Compressor and the SAXSerializer but not to the XSLT Processor,
because that requires a DOM.

[« Frevious Jiecr |

[« revious fnexr]
Processing XML with JSPs and XML Beans

Many XML developers today use Oracle JDeveloper as an integrated development environment (IDE) to speed their
development cycle and take advantage of the component approach in building applications based on numerous
prebuilt components. The JavaBeans component model is fully supported in Oracle JDeveloper. In JDeveloper, you
can build JavaBeans that can later be reused in other projects, or install and use JavaBeans that are built by Oracle
or third-party vendors.

You can install the beans in JDeveloper on the JDeveloper Tools palette and later customize and include them in
your application. Once the beans are installed, you can use drag-and-drop to add beans from the Tools palette to
your application. When you add a bean to your application design surface, JDeveloper automatically generates the
code needed to instantiate and customize the bean. This usually includes creating an instance of the bean, setting
the bean properties to customize the bean, and adding action listeners to the bean to enable the application to
handle the events generated by the bean. Because this technology is so powerful and easy to use, it is natural to
encapsulate key XML functionality into JavaBeans.

The Oracle XML JavaBeans are a set of XML components for Java applications or applets that make adding XML
support to an application easy. These Java components can be integrated into Oracle JDeveloper to enable
developers to create and deploy XML-based database applications quickly. The following beans are provided:

m DOMBUuilder bean

m XSLTransformer bean
m DBAccess bean

= XMLDBAccess bean

m XMLDIiff bean

m XMLCompress bean

m XSDValidator bean

If you install these beans into your JDeveloper environment, as described in Chapter 13, you benefit by the
automatic code generation that JDeveloper performs when you include the beans in your application. If you do not
use JDeveloper and work in a command-line JDK environment, you can also use the beans to visualize and
transform XML. In this case, you simply use the beans as you would any other classes. The examples in this chapter
were developed using JDeveloper.

DOMBUuilder Bean

The DOMBuilderbean encapsulates the Java XML Parser with a bean interface and extends its functionality to
permit asynchronous parsing. By registering a listener, Java applications can parse large or successive documents
by having the control return immediately to the caller. The following sample code shows a program that takes a list of
XML files as parameters and parses all of these files concurrently:

package sanpl e;

i nport java.aw.event.*;

i nport oracle.xm.async.*;

i nport oracle.xm.parser.v2.*;
i nport org.w3c. dom *;

i nport java. net.*;

i nport java.io.*;

public class MParse extends bject
i mpl enents DOMBUI | der Li st ener, DOMBui | der ErrorLi st ener {
int numArgs,i;
String Args[];
DOMVBuUi | der tParser;

public MParse(String[] args) {
Ar gs=ar gs;

}
public void parse() {
for (i=0;i<Args.length;i++) {
/'l new instance of the asynchronous parser
t Par ser =new DOMBuI | der (i) ;
// add this Listener object to be notified when parsing is conplete
t Par ser. addDOVBui | derLi st ener (this);
/1l or when an error occurs
t Par ser. addDQOVBuUI | derError Li st ener (this);
Systemout.printIin("Start parsing "+Args[i]);
try {
t Parser. parse(new URL("file:"+(String)Args[i]));
} catch (Exception e) {
Systemout.println(e.toString());

}
}
Systemout.println("Miltiple files parsed i n background threads");
}
public static void main(String[] args) {
MPar se mPar se = new MPar se(args);
nPar se. parse() ;
}
/1 1nplementi ng DOMBuUIi | der Li stener Interface
/1 Method cal |l ed by DOMBui | der when docunment parsing starts
public voi d donBui |l der St arted(DOVBui | der Event p0) {

}

/1 Method call ed by DOMBui | der when docunent parsing returns an error.
public void donBui |l der Error(DOVBuUI | derEvent p0) {

}
/1 Method call ed by DOMBui | der when docunent parsing is conpl et ed.

public void donBuil der Qver (DOMBui | der Event p0) {
DOMBUI | der par ser;
XMLDocument xm Doc;
int id;
/1 CGet a reference to the parser instance that finished parsing.
par ser =(DOVBuUI | der) p0. get Sour ce() ;
[/l Get the parser idto identify the file being parsed
i d=parser.getld();
System out. println("Parse conpleted for file "+Args[id]);
[/l get the domtree
xm Doc=par ser . get Docunent ();
/!l You can add custom code here to work with the parsed docunent.

/1 1mpl enenting DOVBUI | der ErrorLi stener |nterface

/1 This nethod is called when parsing error occurs.
publi c void donBuilderErrorCall ed(DOVBui | der ErrorEvent p0) {
int id=((DOMBuilder)p0.getSource()).getld();
Systemout. println("Parse error for "+Args[id]+": "+
p0. get Excepti on() . get Message());
}
}

If you run this program using the following command, you get the output displayed in Figure 7-1.
java Sanple. mParse booklistl1l.xm booklist2. xm booklist3.xmn

Start parsing booklist1.xml

Start parsing booklist2. xml

Start parsing booklist3.xml

Multiple files parsed in background threads
Parse completed for file booklist2.xml|
Parse completed for file booklist1.xml

Parse completed for file booklist3.xml
Figure 7-1: Example output in JDeveloper that uses the DOMBUuilder bean

If you have to parse a large number of files, the DOMBuilder bean can deliver significant time savings. Depending
on the system and the number of concurrent threads (instances of DOMBuilder), we have achieved up to 40 percent
faster times compared to parsing the files one after another.

The asynchronous parsing in a background thread implemented in DOMBuildercan also be used in interactive
visual applications. If the application parses a large file using the normal parser, the user interface will freeze until
the document is parsed completely. This can easily be avoided if the DOMBuilder bean is used instead. After calling
the parse method of DOMBUuilder, the application receives the control back immediately. The application can then
display a window with the message “Parsing, please wait.” The window can also show a Cancel button, so that the
user can abort the operation if they decide to do so. If no user action is taken, the program resumes when
domBuilderOver() is called by the DOMBuilder bean upon completion of the parsing task in the background.

XSLTransformer Bean

The XSLTransformer bean encapsulates the Java XML Parser’s XSLT processing engine with a bean interface and
extends its functionality to permit asynchronous transformation. By registering a listener, Java applications can
transform large or successive documents by having the control returned immediately to the caller. Because the XSL
transformations are time-consuming, you may consider using this asynchronous interface for XSL transformations.
The XSLTransformer bean can benefit applications that transform large numbers of files by transforming multiple
files concurrently. It also can be used for visual applications to achieve responsive user interfaces. The
considerations here are the same as with the DOMBUuilder bean. From a programming standpoint, the preceding
sample demonstrates the general approach that can also be applied to the XSLTransformer bean. The main point is
that by implementing the XSLTransformerListenerinterface, the calling application is notified when the
transformation is over. Therefore, the calling application can do something else between requesting the
transformation and getting the result.

DBAccess Bean

The DBAccess bean maintains CLOB tables that are used to store XML documents. This functionality is quite useful
when you are storing a wide range of XML documents and you are most interested in storing and retrieving them
quickly without performing any XML processing within the database. This type of storage is also important when you
wish to preserve any entities within the XML document instead of having them expanded, as would occur with an
XMLType CLOB.

The database access is through JDBC to the CLOB tables that may store the XML and XSL files, or even files
resulting from applying the XSL stylesheet to the XML file. The DBAccess bean provides the following functionality:

m Creates and deletes CLOB tables.
m Lists a CLOB table’s contents.
m Adds, replaces, or deletes XML documents in the CLOB table.

The following code fragments demonstrate this functionality. These fragments assume the appropriate strings are
passed in on the command line or through prompts.

/] Create a new XML CLOB Table
voi d creat eXMLOLOBTabl e(Stri ng tabl eName) {
log.println("\nDenp for createXM.Tabl es():");
try {
db. cr eat eXMLCLOBTabl e(con, tabl eNane);
} catch (Exception ex) {
| og. println("Error creating XML CLOB table: " + ex.getMessage());

}
log.println("Table + " + tableName + "' successfully created.");
return;
}
/'l Replace XML Data in CLOB Table
voi d repl aceXM.CLOBDat a(String tabl ename, String xml nane,
String fil ename) {
log. println("\nDeno for replaceXM.CLOBData() (simlar to insert):");
String xmdata = | oadFile(fil enane);
try {
db. repl aceXM.CLOBDat a(con, tabl enane, xml nane, xmnl data);
} catch (Exception ex) {
log.println("Error inserting into XM. CLOB table: " +
ex. get Message());
}
log.printIn("XM. Data from+'" + filenanme + "' successfully
replaced in table '" + tablenane + "'.");
return;
}
/1 Retrieve XM. Data from CLGB Tabl e
voi d get XMLQLOBDat a(Stri ng tabl enane, String xm name) {
log.println("\nDeno for get XM.CLOBData():");
String xm Text=null;
try {
xm Text =db. get XM_.CL(BDat a(con, tablename, xmnl nane);
} catch (Exception ex) {
log.println("Error getting XML data: " + ex.get Message());
return;
}
log.println("XM. CLOB data fetched: ");
I og.println(xm Text);
return;
}
/1 List all XM. QLOB Tables
void |ist XM.CLOBTabl es() {
/1l list all recognized XM. CLCB t abl es
log.println("\nDenmo for |istXM.CLCBTabl es():");
String tableNames[];
int i;
try {
tabl eNames=db. get XMLCL(BTabl eNanes(con, "");
for (i=0;i<tabl eNames.length;i++) {
| og. printl n("tabl enamename="+t abl eNanes[i]);
}
} catch (Exception ex) {
log.printIn("Error listing XML CLOB tables: "
+ ex. getMessage());

}

The complete DBAccess bean demo code is available as DBAccessDemo.java in the source download.

XMLDBAccess Bean

The XMLDBAccess bean is a simple extension of the DBAccess bean to support XMLType CLOBs that were
introduced in Oracle9i. This bean has different packaging because it additionally depends upon the xdb.jar file that
provides Java access to the XMLType. While the functionality includes all the equivalent methods to the DBAccess
bean, it adds one useful function based upon the fact that the document is parsed on insert as XML. The
getXMLXPathTextData() method retrieves the value of an XPath expression from the XML document stored in the
table. The following code fragment illustrates this:

voi d get XM_.TypeDat a(Stri ng tabl ename, String xm nanme) {
log.println("\nDeno for get XM.TypeData():");

String xm Text=null;
try {
xm Text =db. get XM.TypeDat a(con, tablenane, xmnl nane);
} catch (Exception ex) {
log.println("Error getting XM.Type dat a:
return;

+ ex. getMessage());

}
|l og.println("XM.Type data fetched: ");

| og.println(xm Text);
return;

}

On the surface it would appear that you should always use the XMLDBAccess bean over the DBAccess bean
because of this increased functionality. Note, however, that since the XML documents are parsed, any referenced
DTDs will need to be fetched and entities replaced. Thus, the document stored will not be identical to its inserted
state when it is retrieved.

XMLDiff Bean

At some time, you may be faced with the task of determining whether two XML documents are the same. In practice
this is usually not a simple character-for-character comparison, because for many XML documents, white space and
linefeeds are insignificant. Instead, what is important is to determine how the structure and text content differ. The
XMLDiff beanwas created for just this purpose. It does a DOM tree comparison of file A to file B while producing an
XSL stylesheet to convert A into B. There is additional visual functionality available that uses JPanel to visually
display the differences detected.

This bean has many uses and, since it uses the standards-based XSLT language to indicate the differences, itis an
excellent component for pipeline applications. One particular application would be to keep track of document
revisions. As each XML document is submitted, it can be compared to its previous version, and the resulting XSLT
stylesheet can be stored. Another application would be to use it to detect whether material differences have
occurred between XML files, such as XML schemas. You will be building such an application using the XMLDiff bean

inChapter 17.

XMLCompress Bean

One of the disadvantages of XML is the fact that whenever it is received in serialized form, it needs to be parsed in
order for any operations to be performed. There is the additional disadvantage of the growth in size caused by the
tag encapsulation of the data. We have seen real production schemas where the instance XML documents were 10
to 100 times the size of the data they contained! The XMLCompress bean provides an efficient solution to these
situations. It encapsulates the XMLCompress serialization method that creates a binary format from the DOM that
tokenizes the XML tags, resulting in a more compact XML stream. Additionally, Oracle XML processors such as XSL
and XSD can read from the compressed stream directly to re-create the DOM without reparsing the document.

To maximize the flexibility of the bean, both DOMCompress()andSAXCompress() are provided, which support a
full range of input sources, including files, strings, and streams. Additionally, the DOM method supports the
XMLType, CLOB, and BLOB Oracle SQL data- types. It should be noted that there is only a complementary
DOMExpand()method, as applications that don’t need the DOM can work exclusively with SAX input and output
events, therefore making a SAXExpand() function unnecessary.

XSDValidator Bean

Rounding out the set of XML beans is the XSDValidator bean. While, like the other beans, it encapsulates the
XSDValidator class in the XML parser, it has one significant feature that makes it the choice for visual or editor
applications. The XSDValidator bean includes a getStackList() method that returns the list of DOM tree paths that
lead to the invalid node if a validation error is returned. To use this function, you need to use the java.util.vector
andjava.util.stackclasses, which are populated with the path list as follows:

static void printError(XSDvali dator xsdval) {
/1 Initialize list of paths
Vector vectPath = xsdval . get StackLi st ();
/'l Register error handl er
DocErrorHandl er errHndl =
DocEr r or Handl er) xsdval . get Error (). get Error Handl er () ;

/1l Initialize list of errors
Vector errlist = errHndl.getErorList();
if (vectPath.isEnpty()) {
Systemout. printIn("Schema validation successful! No errors.");
}
if (!'(vectPath.isEnmpty())) {
/1 Initialize Stack for nodes
Stack tempStack ;
XM_.Node xnode;
Enumer ati on enunml = vect Pat h. el ement s() ;
Enunerati on enun2 = errlist.elements();
/1l Print paths and correspondi ng nodes that had errors
whi | e (enuml. hasMr eH enent s() &% enun?. hasMor eEl enent s()) {
System out.println(enun. next H enent ());
tenmpSt ack = (Stack)enunil. next H ement ();
whil e (! (tempStack.enpty())) {
xnode = (XM_Node) ((t enpSt ack) . pop());
System out . print (xnode. get NodeNane());
if (!'(tenpStack.enpty()))
Systemout. print("->");

}
Systemout . println();

Using XML Beans in JSPs

You can use the Oracle XML beans in your JSP pages just like you would any other bean because they all conform
to the Sun JavaBeans specification and include the requisite BeanInfo class that extends
java.beans.SimpleBeanInfo. By using the <jsp:usebean> tags, you can embed your Java program code easily
into an HTML page as follows:

<% page |anguage="j ava"

content Type="text/ xm ; charset=UTF-8" %

<jsp:useBean class="XMLDiff" id="xm _diff"

scope="request" >

<%

<jsp:set Property nane="booklist" property="file" val ue="booklist.xm"/>

/1 Your Java Code

%>

Note that you can set properties for the execution of the class using one or more <jsp:setproperty> tags.

[« rreviovs [ecr s |

[« revious fnexr]
Introducing the XSQL Page Publishing Framework

Building upon the functionality of the XML SQL Utility and the XML parser is the XSQL Servlet. Written in Java, this
servlet provides a high-level declarative interface to developers and webmasters to render data across the Internet
dynamically and in custom formats. Able to run with the servlet engines of most web servers, the XSQL Servlet
delivers the capability to transform a single data source automatically in terms of the client browser and the format
best suited to its capabilities and those of the platform.

The XSQL Pages

The heart of the XSQL Servlet is the XSQL page. This page is simply an XML file that contains specific elements to
direct the action of the servlet. The following booklist.xsql file is a simple XSQL page:

<?xm version="1.0"?>

<?xm -stylesheet type="text/xsl" href="booklist.xsl"?>

<xsql : query connecti on="denp" xm ns:xsql="urn: oracl e-xsql ">
sel ect * from Bookli st

</xsql: query>

Figure 7-2 shows the process flow when an Internet browser requests this page and the web server hands over the
request to the XSQL Servlet after it registers the xsqgl extension with the server. The servlet then hands the page to
the XML parser to retrieve its instructions. In this case, it is asked to open a JDBC connection with the alias of

demo and submit the query Select * from Booklist. It does this by passing this data to the XML SQL Utility, which
performs the query as described previously and returns the result as an XML DOM object. Finally, the servlet passes
the stylesheet reference along with the DOM object to the XML parser's XSLT processor to apply the transformation
to HTML for display in the client’s browser.

Call g = e | WA Bt

=== | SOL aueries

= “

| [Java Web server |
t-.%

Frag /" (Servlet unning in Cracle Database 10g,

— Fd OIS, o a lava Web server
PIIA 4 y
1T F XSO Serviel
o L . -
= = \ XML parser with | | XsL S0
=} ; WSLT peocessos | utility
" a .
o itier .
— = = Cuaery nesult

= = = transicnmd by
=== | 5L styleshect for
Largel device

Py

Graphica Mon-graphica
o becrasir

Figure 7-2: XSQL page process

Oracle Database 105

The essential elements of the file are the <xsql:query>element, which includes the database connection
information within its connection attribute, and the SQL query within its body. The connection value is an alias
contained within the <connectiondefs>section of the XML Config.xml file:

<connect i ondef s>
<connecti on name="denn" >
<user name>scot t </ user nane>
<password>ti ger</ passwor d>
<dbur| >j dbc: oracl e:t hi n: @ocal host: 1521: CRCL</ dbur | >
<driver>oracle.jdbc.driver. Oracl eDiver</driver>
</ connecti on>

<connecti on name="xnl book">

<user nane>xm book</usernane>
<passwor d>xnl book</password>
<dbur | >j dbc: oracl e: t hi n: @ocal host: 1521: CRCL</ dbur | >
<driver>oracle.jdbc.driver. Oracl eDriver</driver>
</ connect i on>

<connection nanme="lite">
<user nane>syst enx/ user nanme>
<passwor d>nmanager </ passwor d>
<dbur | >j dbc: Polite: PO ite</ dburl >
<driver>oracle.lite.poljdbc. PALJDBCDriver</driver>
</ connect i on>
</connectiondef s>

This section from the default XMLConfig.xmlfile shows the declaration of the database connection string and the
JDBC driver that will be used by the XML SQL Utility. Because you can have this file reside on the server in a
directory that is not accessible to the client, this information remains secure.

Installing the XSQL Servlet

The XSQL Servlet is designed to be quite flexible in its installation and setup. It may be used in any Java 1.2 or
greater JVM and with any JDBC-enabled database. Specific testing has been done with JDK 1.2.2,1.3.1, and 1.4.2
on Windows and several Unix platforms, including Solaris, Linux, and HP-UX. Even though it has previously
supported 1.1.8, the 10g libraries no longer support this JDK version, nor does Sun.

Submitting Queries to the XSQL Servlet

The XSQL Servlet is designed to create dynamic web pages from database queries. The XSQL pages can be linked
to any web site and can contain one or more queries whose results will replace the respective <xsql:query> section
in the page. These results can be further customized through the use of attributes within the <xsql:query> tag.
Table 7-1 shows the various options that are available.

Table 7-1: Attribute Options for the <xsl:query> Element
Attribute Default Description

rowset-element <ROWSET> Element name for the query
results. Set equal to the empty
string to suppress printing a
document element.

row-element <ROW> Element name for each row in
the query results. Set equal to
the empty string to suppress
printing a row element.

max-rows Fetch all rows Maximum number of rows to
fetch from the query. Useful for
fetching the top N rows or, in
combination with skip-rows, the
nextN rows from a query resul.

skip-rows Skip no rows Number of rows to skip over
before returning the query
results.

id-attribute Id Attribute name for the id
attribute for each row in the
query result.

id-attribute-column Row count value Column name to supply the
value of the id attribute for each
row in the query result.

null-indicator Omit elements with a NULL If set to y or yes, causes a null-
value indicator attribute
to be used on the element for
any column whose value is

NULL.
tag-case Use the case of the column If set to upper, the element
name or alias from the query names for columns in the query
result appear in uppercase
letters.

If set to lower, the element
names for columns in the query
result appear in lowercase
letters.

Parameters can also be passed into the query from the HTTP request line. By prefixing an @ to the parameter
name, the XSQL Servlet will search the HTTP request parameters and then the <xsql:query> attributes to find a
match. Once a match is found, a straight lexical substitution is performed. The following is an example of an XSQL
page using this function when the HTTP request line is http://localhost/xsgl/demo/booksearch.xsqgl?year=2001:

<?xm version="1.0"?7>
<xsql : query xnl ns: xsqgl ="urn: oracl e-xsql" connecti on="denp"
SELECT Tl TLE, AUTHOR, DESCRIPTI ON FROM BOOKLI ST
WHERE YEAR = { @ear}
</xsql: query>

Queries that return no rows can also be handled by adding an optional <xsql:no-rows-query>element within the
<xsql:query> tags. This allows the user to see a formatted page instead of the raw error. The following is an
example that initially tries to retrieve the listings corresponding to the author's name; failing that, it attempts to do a
fuzzy match on the submitted name:

<?xm version="1.0"?>
<xsql : query xnlns: xsqgl ="urn: oracl e-xsql" connecti on="denp"
SELECT TI TLE, AUTHOR, DESCRIPTI CN FROM BOOKLI ST
VWHERE AUTHCR = UPPER ('{@ut hor}"')

<xsgl : no-r ows- quer y>
SELECT TI TLE, AUTHOR, DESCRIPTI ON FROM BOOKLI ST
WHERE AUTHCR LIKE UPPER (' % @ut hor} %)
ORDER BY AUTHOR
</ xsql : no-rows-query>

</xsql: query>

Transforming the XSQL Output with Stylesheets

The real power of the XSQL Servlet lies in its capability to dynamically transform query results by applying XSL
stylesheets. The stylesheet declaration is included in the XSQL file and is applied once the XML output from the
guery is received. It most commonly transforms query results into HTML, as can be seen in the following example;
however, the stylesheet can perform any text-based transformation. The following XSQL page and its associated
stylesheet will return the results to the requesting browser as an HTML table:

<?xm version="1.0"?7>
<xsql -stylesheet type="text/xsl" href="totabl e.xsl"?>
<xsql : query xm ns: xsqgl ="urn: oracl e-xsql" connecti on="denn"
SELECT Title, Author, Description FROM Bookli st
WHERE Aut hor = UPPER ('{@uthor}")
<xsql : no-r ows- quer y>
SELECT Title, Author, Description FROM Bookli st
VWHERE Aut hor LIKE UPPER (' % @ut hor} %)
ORDER BY Aut hor
</ xsql : no-rows-query>
</xsql: query>

http://localhost/xsql/demo/booksearch.xsql?year=2001

This is the Totable.xsl| stylesheet:

<htm xm ns: xsl="http://wwm. w3. or g/ 1999/ XSL/ Tr ansf or mi' >
<head>
<title>Book Listing</title>
</ head>
<body>
<tabl e border="1" cell spaci ng="0">
<tr>
<t h>Aut hor </ b></ t h>
<t h>Ti t| e</ b></t h>
<t h>Descri ption</t h>
</[tr>
<xsl: for-each sel ect =" ROANSET/ ROW >
<tr>
<t d><xsl:value-of select="TI TLE'/></td>
<t d><xsl:value-of sel ect =" AUTHCR"/ ></td>
<t d><xsl: val ue- of sel ect ="DESCR PTION"'/ ></td>
</[tr>
</ xsl : for-each>
</t abl e>
</ body>
</htm >

Figure 7-3 shows the query result and subsequent transformation.

T . ¥ =)
"R
hab o R I T T L R o i [e T ep——rr— £ LT -

Tl

e W Agplemon S
M Bk Wl Tl -
pa

. S LTRSS

Figure 7-3: Formatted output from the SearchAuthor.xsql page

Multiple stylesheet declarations are also supported. In such instances, the XSQL Servlet chooses the transformation
method by matching the user-agent string in the HTTP header to an optional media attribute in the <xml-
stylesheet> element. The match is case-insensitive, and the first match in file order is the one applied. The following
example shows how multiple browsers are supported.

<?xm version="1.0"?7>

<?xm -stylesheet type="text/xsl" nedi a="Iynx" href="booklist-I|ynx.xsl"?>
<?xm -stylesheet type="text/xsl" nedi a="nmsie" href="booklist-ie.xsl"?>
<?xm -stylesheet type="text/xsl" href="booklist.xsl"?>

<xsql : query connecti on="denmp" xm ns:xsql ="urn: oracle-xsql ">
select * from BOOKLI ST
</xsql: query>

Note that the last stylesheet declaration has no media attribute. It will be applied to any HTTP requests that do not
match the others and thus acts as the default stylesheet. Table 7-2 shows the allowable attributes that can be
added to the <xml-stylesheet> element and their functions.

Table 7-2: Attribute Options for the <?xml-stylesheet?> Element

Attribute Default Description

rowset-element <ROWSET> Element name for the query
results. Set equal to the empty
string to suppress printing a
document element.

row-element <ROW> Element name for each row in
the query results. Set equal to
the empty string to suppress
printing a row element.

max-rows Fetch all rows Maximum number of rows to
fetch from the query. Useful for
fetching the top N rows or, in
combination with skip-rows, the
nextN rows from a query resul.

skip-rows Skip no rows Number of rows to skip over
before returning the query
results.

id-attribute Id Attribute name for the id
attribute for each row in the
query result.

id-attribute-column Row count value Column name to supply the
value of the id attribute for each
row in the query result.

null-indicator Omit elements with a NULL If set toy or yes, causes a null-
value indicator attribute
to be used on the element for
any column whose value is

NULL.
tag-case Use the case of the column If set to upper, the element
name or alias from the query names for columns in the query
result appear in uppercase
letters.

If set to lower, the element
names for columns in the query
result appear in lowercase
letters.

The final way to apply a stylesheet is to pass its URL as an HTTP parameter as follows:
http://1 ocal host/yourdat apage. xsql ?par ani=val ue&xmnl - st yl esheet =your st yl e. xsl

This technigvue is especially useful for prototyping and development. By replacing the stylesheet URL with none,
you ensure that the raw XML document is sent without any stylesheet processing.

Inserting XML Documents with the XSQL Servlet

By leveraging the full capability of the XML SQL Utility, you can set up an XSQL page to insert XML documents into
a database. An XML document can be submitted to the OracleXMLSave class of the XML SQL Utility by employing
the Action Element, <xsql:insert-request>. As discussed previously, the schema must already exist in the
database to save a document. While at first this may be considered a limitation, the XSQL Servlet’s capability to
apply a stylesheet to the XML document on submission provides the necessary functionality to filter or transform
documents as needed.

Returning to the book listing example presented earlier in the chapter, an XSQL page can be set up to accept book
listings not only in the prescribed format of the database but also from virtually any text-based format. For example,
consider the case in which alocal bookseller would like to list his books on the pages, but his book listings use a
different set of tags from the database schema. By creating an XSLT stylesheet and applying it on receipt of his
listings, his selections could be accommodated. The following XSQL page could accept the book feed from “Joe’s

http://localhost/yourdatapage.xsql?param1=value&xml-stylesheet=yourstyle.xsl

Books” via HTTP and transform it into the Booklist database schema by applying the joesbooks.xsl stylesheet and
then submitting the resulting XML to the OracleXMLSave class for insertion:

<?xm version="1.0">

<xsql :i nsert-request xm ns: xsqgl ="urn: oracl e-xsql "
connecti on = "demp" table = "BOOKLI ST"
transform = "j oesbooks. xsl"/>

However, one more item must be set up to make this example function properly. The database generates the
BookID column; therefore, this column’s entry must be created for each new insertion. This can be done by setting
up a trigger on the Booklist table that generates this ID whenever an insertion is made. The following SQL script will
create a new BookID when each new listing is added, assuming you have already created a sequence named

bookid_seq:
CREATE TRI GGER bookl ist _autoid
BEFORE | NSERT ON BOOKLI ST FOR EACH ROW
BEG N
SELECT booki d_seq. nextval
| NTO : new. Bookl D
FRQM dual ;
END;

Other Action Elements that are supported by the XSQL Servlet and their functions are listed in Table 7-3.

Table 7-3: Action Elements and Their Functions for XSQL Pages

Action Element

<xsql:set-stylesheet-param>

<xsql:set-page-param>

<xsgl:set-session-param>

<xsql:set-cookie>

<xsql:query>

<xsql:ref-cursor-function>

<xsqliinclude-param>

<xsglinclude-request-params>

<xsqlinclude-xm/>

<xsqgl:include-owa>

<xsql:if-param>

<xsql:include-xsqgl>

<xsglinsert-request>

<xsgl:update-request>

Description

Sets the value of a top-level XSLT stylesheet
parameter.

Sets a page-level (local) parameter that can be
referred to in subsequent SQL statements in the

page.
Sets an HTTP session-level parameter.
Sets an HTTP cookie.

Executes an arbitrary SQL statement and includes
its result set in canonical XML format.

Includes the canonical XML representation of the
result set of a cursor returned by a PL/SQL stored
function.

Includes a parameter and its value as an element
in your XSQL page.

Includes all request parameters as XML elements
in your XSQL page.

Includes arbitrary XML resources at any point in
your page by relative or absolute URL.

Includes the results of executing a stored
procedure that uses the Oracle Web Agent (OWA)
packages inside the database to generate XML.

Includes nested actions and/or literal XML content
if some condition based on a parameter value is
true.

Includes the results of one XSQL page at any
point inside another.

Inserts the XML document (or HTML form) posted
in the request into a database table or view.

Updates an existing row in the database based on
the posted XML document supplied in the request.

<xsql:delete-request> Deletes an existing row in the database based on
the posted XML document supplied in the request.

<xsglinsert-param> Inserts the XML document contained in the value
of a single parameter.

<xsql:dml> Executes a SQL DML statement or PL/SQL
anonymous block.

<xsql:action> Invokes a user-defined action handler,
implemented in Java, for executing custom logic
and including custom XML information into your
XSQL page.

Updating Data with the XSQL Servlet

Many applications require that data or documents be updated instead of wholly replaced. In a similar manner to the
way the BooklID was automatically generated, you can use a form of trigger to provide this functionality.

Oracle makes available an INSTEAD OF trigger that allows a stored procedure in PL/SQL or Java to be called
whenever an INSERT of any kind is attempted. These triggers utilize Oracle’s Object Views to be associated with
the INSERT.

For example, if you wanted to have the Booklist table be updatable, you could initially search for the unique
combination of title and author and, if one is found, perform an UPDATE instead of doing an INSERT. To set this up,
you must create an Object View corresponding to the Booklist table. This can be done using the following SQL:

CREATE VI BEW Bookl i st vi ew AS
SELECT * FROM Bookl i st ;

Next, the trigger needs to be created and associated with this view. In this example, PL/SQL is being used, but the
job could also be done with a Java stored procedure.

CREATE OR REPLACE TRIGGER i nst eadOf I ns_bookli stvi ew
| NSTEAD OF | NSERT ON bookl i stvi ew FOR EACH ROW

DECLARE
not Ther e BOOLEAN : = TRUE;
t VARCHAR2(1) ;
CURSOR chk IS SELECT 'x' FROM BOOKLI ST
VWHERE TITLE = :new.title AND AUTHOR = : new. aut hor;
BEGA N
OPEN chk;

FETCH chk | NTO t np;
not There : = chkYNOTFOUND;
CLCSE chk;

| F not There THEN
UPDATE | NTO Bookli st (TI TLE, AUTHOR, PUBLI SHER, YEAR
| SBN, DESCR PTI ON)
VALUES (:new title, :new author, :new. Publisher,
:new Year, :new | SBN, :new. Description);
END | F;
END;

Finally, the XSQL file needs to be changed as follows to update the Booklistview instead of the Booklist table:

<?xm version="1.0">
<xsql :i nsert-request xm ns: xsql ="urn: oracl e-xsqgl "

connection = "demo"
table = "Bookli stview'
transform = "j oesbooks. xsl "/ >

As a final note, since the uniqueness is being checked in terms of the combination of the title and author, a unique
index can be created to speed up the check and improve performance. The following SQL statement will create the
index:

CREATE UNI QUE | NDEX bookli st _i ndex CN booklist(Title, Author);

While the previous example explained how to perform an update using the trigger functionality of an object view, you
can also use the XML SQL Utility update capability from the XSQL Servlet using the following very simple .xsqlfile:

<?xm version="1.0"?7>

<xsql :dm connecti on="dem" xml ns: xsql ="urn:oracl e-xsql">
updat e Booklist set status="S' where BooklD = "1'";

</xsql:dm >

This example illustrates the simplicity and power of the XSQL's XML-based interface.

Using JSPs and XSQL Pages

While you can extend XSQL pages with custom action handlers to call Java classes, you can also use JSP pages to
include XSQL pages using <jsp:include> or forward to them using <jsp:forward>. For example, this allows you to
bind variables into a SQL query that would be run by an XSQL page. Consider the query used earlier with a simple
booksearch.xsqlpage:
<?xm version="1.0"7?>
<xsql : query xni ns: xsqgl ="urn: oracl e-xsql" connecti on="denon"

bi nd- par am={ @ar ant
SELECT Tl TLE, AUTHOR, DESCRI PTI ON FROM (@ abl e)
</xsql: query>

This XSQL page can be called from the following JSP fragment to pass in the bound parameters:

<jsp: forward page="booksearch. xsql ">
<j sp: param nane="t abl e" val ue="BOXLI ST WHERE YEAR = ?"/>
<j sp: param nane=" YEAR" val ue="2001"/>
<j sp: param nane="par ant' val ue="YEAR'/ >

</jsp:forward>

When you want to include the results of an XSQL page within a JSP, you can use <jsp:include> in the following
manner:

<jsp:include page="booksearch. xsql " >.

[« rreviovs [exr |

[« Frevious|
Best Practices

In this chapter you have seen several techniques that can be used to put together XML-enabled applications. The
common theme is that whether you use the Pipeline Processor, JSPs, or the XSQL Servlet, the code is almost
entirely declarative. This is distinctly different from normal compiled and linked applications in that the code can be
changed, customized, or updated at any time. This approach has the advantage of allowing you to develop generic,
high-quality, reusable components that can be easily put together in the same way that integrated circuits simplified
and improved electronic circuit design over discrete transistors.

Creating a More Secure Connection

In most applications, you will use the XSQL Servlet to connect to a database. The XSQLConfig.xml file must be
kept secure on the server. This file should never be in any directory tree that is mapped to a virtual path of your web
server. You should set up an account that owns your servlet engine for your application and make sure that only this
account has read permissions on the file.

It is also important that you control the parameters passed by the URL into the XSQL Servlet. By default, it will
accept a stylesheet using the xml-sytlesheet parameter unless you add the attribute allow-client-style="no" to the
document element of your page.

Finally, you saw how to use lexical substitution of variables into SQL queries. This is a common feature of many
Oracle products. It is also potentially a dangerous one. Therefore, you can guard against abuses by limiting the
scope of database access permitted to users of your application. You can also bind variables (as shown in the
“Using JSPs and XSQL Pages” section) or, even better, perform the entire database transaction in a custom action
handler call.

When You Need Simple JSP XML Functionality

Besides all of this powerful XML functionality provided by the XDK, Oracle does supply an XML JSP tag library with
its OC4J J2EE container. This library is called xml.jar and can be found in the /j2eeljsp/lib/tidsdirectory. It
provides the following custom JSP tags to perform simple XML processing:

m xml:transform Takes a stylesheet and applies it to the XML in the tag’s body

m xml:styleSheet Declares and locates the stylesheet to be used for xml:transform

m xml:parsexml Parses the XML in the body of the tag into a DOM for node access

= xml:cacheXMLObject Allows for XML objects such as DOMs to be cached in the Web Object cache

In Oracle XML Database 10g or earlier, these tags do not use the XDK libraries, but instead use the XML ones
included in JDK 1.4.

[« rreviovs [ecr s |

Part II: Oracle XML Management for DBAs

Chapter List

Chapter 8: Getting Started with the Oracle XML Database
Chapter 9: Storing XML Data

Chapter 10: Generating and Retrieving XML

Chapter 11: Searching XML Data

Chapter 12: Managing the Oracle XML Database

[rrevious e]
Chapter 8: Getting Started with the Oracle XML Database

Overview

TheOracle XML Database (XML DB) refers to the collection of XML technologies built into the Oracle Database 109
database, providing high-performance and native storage, retrieval, and processing of XML. This native XML
functionality is seamlessly integrated with the Oracle relational database server to bridge the gap between the
relational table-row and XML hierarchical storage. Therefore, you have the advantage of leveraging the power of
both.

As companies are seeking XML technologies to automate and enhance their core business processes over the
Internet, the Oracle XML Database, along with the programming interfaces in the Oracle XML Developer’s Kit
(XDK), provides a platform to efficiently build and deploy XML solutions.

This chapter discusses what the Oracle XML database is, what the related XML features are, and how to set up the
environment to make sure that these features are ready for use. It will then work though some examples to help you
get familiar with the basic XML DB functionality. Finally, it will provide information to help you make decisions
regarding when and how to use the XML database features. Specifically, it will

m Show how to set up the XML database environment
m Discuss various uses of the native XMLType data type
m Explore the various XML storage and processing options

m Investigate the effective design of XML database solutions

[« rreviovs [exr |

[« revious fnexr]
A Brief History of XML Support in Oracle Database

The support of XML in the Oracle database began with Oracle8i, in which users could load the Java packages from
the Oracle XDK into Oracle JServer as well as create the XML PL/SQL packages built on the Java stored
procedures. The XML PL/SQL packages include the DBMS_XMLSAVE and the DBMS_XMLQUERY packages,
which are packaged as the XML SQL Utility (XSU), and the XMLPARSER, XMLDOM, and XSLPROCESSOR
packages. The two XSU PL/SQL packages allow users to insert XML documents into the database tables and
retrieve SQL data in XML format through a canonical mapping. The XMLPARSER package is used for parsing XML,
the XMLDOM package is used for XML DOM operations, and the XSLPROCESSOR package is used for XSLT
transformations.

Since all of these packages are built on Java stored procedures, you need to initialize the Oracle Java Virtual
Machine (Oracle JVM) and load the Java packages before using the functionality. This leads additional database
management complexity and high maintenance cost.

In Oracle9i Release 1, a new native XML data type—XMLType—was introduced to store and query XML data in the
database. XMLType provides member functions to access, extract and query XML data using XPath expressions,
such as XMLType.extract(), XMLType.extractValue() and XMLType.existsNode(). Additionally, the C-based
DBMS_XMLGEN PL/SQL package and a set of SQL functions, including the SYS_XMLGEN() and
SYS_XMLAGG(), are provided to create XMLTypes. The new DB Uri-refs allow URL-based content references in
database. With these built-in XML functions and operators, processing XML is simplified, because you do not need
to initialize and maintain the Java classes in the Oracle database. However, these XML functions do not scale well,
because XMLTypes are stored as CLOBs and requires the building of DOM in memory before processing XML
content. In addition, in this release, the text-search functionality in Oracl e Text provides the XPATH support
within the CONTEXT index.

Oracle9i Release 2 introduces additional XML Schema-based data storage for XMLType, which allows users to
register XML schemas that conform to the W3C XML Schema recommendation. After an XML schema is registered,
sets of object types and object tables are created to store XML instances conforming to the schema. The XML
instance documents are “shredded” and stored in the objects. This “preparsed” storage of XML helps avoid the run-
time DOM parsing needed by the CLOB-based XMLTypes in Oracle9i R1. Additionally, the Oracle XML DB is
capable of rewriting the XML queries with XPath expressions into the relational SQL queries for fast data access. In
this release, a new text-search index—CTXXPATH index—is integrated in XMLType to speed up the performance of
XPath searching when using XML Type.existNode() function.

Along with the new storage model, Oracle9i Release 2 provides a document-centric XML DB Repository for high-
performance document management in the Oracle database. The XML DB Repository provides the protocol
interfaces in addition to the SQL interfaces, such as FTP, HTTP, and WebDAV, to help users easily access and
manipulate the XML documents stored in the Oracle database.

Furthermore, the SQL and PL/SQL support for XML processing is enhanced in this release by including the new
XMLType member functions, the new SQL/XML functions, and the C-based PL/SQL packages for processing XML
data. A set of PL/SQL packages and XDBUriType are also provided for the resource management of the XML DB
Repository. As previously discussed, the built-in C functions and PL/SQL packages have less management and
processing overhead than the Java-based PL/SQL packages.

Note Because C-based PL/SQL packages provide compatible APIs with better performance, the Java-based
XML PL/SQL packages, including XMLPARSER, XMLDOM, and XSLPROCESSOR, are deprecated and
are not included in the Oracle Database 10g release.

In Oracle Database 10g, native XML support is further enhanced by supporting a certain level of XML Schema
evolution. This allows you to update the registered XML schemas for XMLTypes without performing an import/export
on your data. Additionally, the existing XML applications can now have a single code line for multi-tier XML
application deployment as Oracle XDK in Oracle Database 10g provides unified DOM interfaces to access
XMLTypes. This support speeds up the XML processing by eliminating the need to reparse the XML documents in
mid-tier and directly utilize the DOM objects stored in the database with “lazy” DOM manifestation. This feature is
initially available in C and C++ for OCI and OCCI applications respectively.

The Oracle Database 10g database now contains extensive native XML functionality within the database server.
The technical details of this technology will be discussed in later chapters. Table 8-1 provides a summary of the
evolution of Oracle XML features.

Table 8-1: XML Features in Oracle Database
Database Version Major XML Features

Oracle8i Java-based XML SQL Utility (XSU):
DBMS_XMLQUERY, DBMS_XMLSAVE
Java-based XML PL/SQL packages: XMLPARSER,
XSLPROCESSOR, XMLDOM
Text search for XML: Searching within XML
elements/attributes using the
AUTO_SECTION_GROUP/XML_SECTION_GROUP
in the CONTEXT index

Oracle9i XMLType with CLOB storage: XMLType.extract(),
Release 1 XMLType.extractValue(), XMLType.existsNode()

SQL functions for XML generation and aggregation:
SYS_XMLGEN(), SYS_XMLAGG()

C-based PL/SQL package for XML generation:
DBMS_XMLGEN

Native DBURI-refs: UriType,DBUriType,
HttpUriType,UriFactoryType

Text search for XML:XPATH searching using the
PATH_SECTION_GROUP

in the CONTEXT index

Text search integration within XMLType:CTXXPATH
index integrated within XML Type.existsNode()

Oracle9i XML Schema-based XMLType and CLOB-based
Release 2 XMLType
New XMLType member functions such as
XMLType.transform()
XML DB Repository and protocol data access
interfaces: HTTP, WebDAV over HTTP, FTP,
SQL/XML support
Oracle SQL extensions for XML Processing:
UPDATEXML(), XMLSEQUENCE()
C-based XML PL/SQL packages:
DBMS_XMLDOM for XML DOM operations
DBMS_XSLPROCESSOR for XSLT transformations
and XPath-based data extraction
DBMS_XMLPARSER for XML parsing
DBMS_XMLTRANSFORM for XSLT transformations
DBMS_XMLSCHEMA for XML Schema operations
such as XML Schema registration and validation
DBMS_XDB for XML DB Repository configuration
DBMS_XDBZ for XML DB hierarchical indexing
DBMS_XDB_VERSION for XML document
versioning in XML DB Repository
Additional native DBUri-refs: XDBUriType

Oracle Database 10g Release 1 XML Schema evolution
New C-based XML PL/SQL package for inserting
XML data: DBMS_XMLSTORE
Unified DOM interfaces to XMLType for OCI/OCCI
applications

Note In OracleX, most of the functionality in DBMS_XMLQUERY and DBMS_XMLSAVE is covered by the C-
based PL/SQL packages—the DBMS_XMLGEN and DBMS_XMLSTORE, respectively. For better
performance, you should always use the C-based packages if they cover the functionality you need.
However, you generally cannot mix the two within a single XML process.

Along with the XML functionality centralized in the Oracle database, you can also take advantage of the XML
interfaces in the Oracle XDK and connect to databases through JDBC or OCI to build mid-tier XML database
applications. This will be discussed in the following chapters.

[« erevious [e |

[« revious fnexr]
Setting Up the Oracle XML Database

To make sure that you can run the examples in the upcoming chapters, you need to have access to Standard or Enterpri:
Oracle Database 10g database and follow the setup procedures explained in this section.

Note Most of the Oracle XML DB functionality discussed in this section also works in Oracle 9.2.0.2 and later release
directory structures for SQL files may be different from Oracle Database 10g.

Installing Oracle XML Database

If you installed the Oracle Database 10g database using Database Configuration Assistant (DBCA), you do not need to p
steps to set up Oracle XML DB because it is set up by default. Otherwise, after the database installation, you need to per
following steps to enable the Oracle XML DB functionality:

1. Create an Oracle XML DB tablespace (as XDB) for Oracle XML DB Repository.
Enable protocol access.

You need to connect as the SYS user and run the SQL scripts in the $ORACLE_HOME/rdbms/ admin (or
%ORACLE_HOME%\rdbms\admin for Windows) directory. These steps assume your Oracle Database 10g installation |
which is the Oracle home directory.

Note The term XDB, which will be introduced, was the original name used by Oracle development for XML DB. There
confusing as it is used internally for labeling users, schemas, tablespaces, etc. For clarification, XML DB will co
used to refer to functionality and the Repository, and XDB to describe XML DB metadata, users, and where it is
default.

Log in to a SQL*Plus session and connect as the SYS user with SYSDBA privilege:
OSPr onpt > SQLPLUS " SYS/ <sys_passwor d> as sysdba"

=

2. Create a new XDB tablespace as follows:

CREATE TABLESPACE XDB LOGE N
DATAFI LE ' D: \or acl e\ or adat a\ ORCLX\ xdb. dbf"
Sl ZE 25M REUSE AUTOEXTEND ON NEXT 1280K MAXSI ZE 100M
EXTENT MANAGEVENT LQCAL;

3. Then, runthe catgm.sql script to create the XDB database registry, PL/SQL packages, and so forth:
SQ> @atgm sql <XDBUSER password> <XDB TS NAME> <TEMP_TS_ NAME>

4. For example, the following command creates the XDB user using the XDB tablespace and sets the temporary tabl
TEMP (the password for the XDB user is XDBPW):

SQ@A> @at gm XDBPW XDB TEMP

5. After all the tablespaces and built-in PL/SQL packages are created, you can reconnect to SQL*Plus as a SYS use
SYSDBA privilege and run the catxdbj.sql script to load XML DB Java libraries:

SQ@Q> @at xdbj
6. If you like to install the XDK packages, such as the DBMS_XMLQUERY and DBMS_XMLSAVE PL/SQL packages
run initxml.sgl as follows:
S@A> @nitxm .sql

Finally, you need to shut down and restart the database.

Now, you have set up the database schema for Oracle XML DB, created the supporting PL/SQL packages, and set up th
component registries in the Oracle database. Next, you need to set up the XML DB HTTP and FTP listeners to allow use
XML DB Repository through the WebDAV/HTTP and FTP protocols.

First, you need to make sure the Oracle Net Services are started. To check the status, you can use the Isnrctl status co
command-line window.

As shown in Figure 8-1, the XML DB service, orcIXXDB, (<Oracle SID>XDB naming convention), and the XML DB HTTP
listeners have started. By default, the HTTP listener listens on port 8080 and the FTP listener uses port 2100.

_El'\:-is-r-:li stales

:I.\.HBCII. for 32-bit Windows: Wernies L0.0.0.2.0 - Prodectios on O8-FEB-2004
l:uerrull fc) 1998, 2000, Orecle, &1 rights resersed.

Connreting to (DESCETPTION={ADORESS= [PRATOCOL-1RC }{EF=EXTPROC)TY

It}“lll.lb‘ ¢' ll-t I. I'rll.'ltlt

I1 an LISTENER
!-st.an-u ate 5-Fib-
e i H

[Trace Lovel alf
[Becurity oFE

SEMP aFF
Rintamisr Faramstar Fils d o ac Te e Tk Yy elminy T atoner.ora

Lintrmer Log I11| d:Yorac e antwmrk’ loghl ivteaer . log
Listiemidg [sshpl
ESCHIFTICN= IDD-?E?S- PQ{-INM =8 e} PR MARE =, ulbe 'l.'l'
BALELP TR = { MR L 5= [P RO IOL =t pof 805 1 =y -~
E\CIIP1I“- AR E 5% = [PROTOCOL =t x p o 85T =ary - Nap
- e = A

matan=

Y-

i8] x|

=l

LR

- Frodsction

{Fr-r sentation=EITP}(S

| WESEuPl = {ABOR E 55= (PRETOCOL =t 0 b 85T oy - Daptos) { PHET= 21000 Fresentation-FTP J {5

mruies T p—
FeErvice Fﬁl‘:lmﬁ ‘!1- 1 “‘1-!4‘1.

%) .
| Instasce "oecl”, statws BLADW, kaw i kesdlerfs} for this sereice.

Service PI.‘-I:lPru-: ham 1 imutance (u)-

| Tnstesce “FLSCatProc auku u—-wu Bas 1 Randler{s] for this serviceo.

[Fervice l:lftl' 'HL- L imstance(s

| Instasce "orcl”, states B 'r "han 1 hasdlecge) for this sereice.

Ih command {_'Irt"! e | iy

.-jé

b

Figure 8-1: Oracle Net Services status

If the status is not as shown in Figure 8-1, you need to perform the following steps, assuming you have the default port 1!

for the database listener:

Initializing the Oracle JVM

If the Oracle JVM is not initialized, you must initialize it before loading the Java package for the XSU PL/SQL packagt

the JVM:

1. Runthe initvm.sgl and initdbj.sql scripts in the $SORACLE_HOME/javavm/install (%ORACLE_HOME%\java\

Windows) directory.

2. When you upgrade the XDK PL/SQL packages, you need to uninstall the XDK with the rmxml.sql utility and rel
XDK PL/SQL packages into Oracle JServer with the initxml.sql utility in the $ORACLE_HOME/rdbms/admir
However, you do not need to reinitialize the Oracle JVM during this reloading process.

3. By default, the XDK PL/SQL packages are loaded into the SYS or SYSTEM user. However, for easier mainter
reloading Java packages is needed, it is suggested to load them into a specific user schema. For example, yo
user named XDK and load the Java classes to this user's schema. This keeps them separated from the other
thus eliminating potential compatibility problems during upgrades. You should also notice that, by default, the
are created for the package names, and the execution privileges are granted to PUBLIC.

To set up the TCP dispatcher, you need to add the dispatchers parameter to a server parameter file (SPFILEORCLX.OF
di spatchers="(PROTOCQL=TCP) (SERVI CE=<SI D>XDB) "

For example, assuming your instance is ORCLX, you need to run the following command as the SYS user:
SQ@Q > ALTER SYSTEM SET di spat chers=" (PROTOCOL=TCP) (SERVI CE=CRCLXXDB) ' SCOPE=SPFI LE;

SQ.> SHOW PARAMETERS di spat chers;

Then, you need to stop and restart the listener by running the following in the command-line window:

OSPronpt > I snrctl stop
OSPronpt > I snrctl start

Finally, you need to shut down and restart the database from SQL*Plus:

SQ@ > shut down i medi at e;
SQ@> startup

To make sure the listeners work properly and the XML DB service is registered, you can check the listener status by runn

command:
OSPronpt > | snrctl status

You should now be able to see the XML DB service and the HTTP and FTP listeners up and running.

Note After Oracle9i, instead of updating the init<SID>.ora file to change the initialization parameters of the Oracle da
you need to update the Stored Parameter File (SPFILE), which is used by default. To do this, you can run the 2
command in the SYS user:ALTER SYSTEM set paranmeter = value SCOPE = MEMCRY | SPHF LE | B
SCOPE clause allows you to set the scope parameters: MEMORY affects the current running database but will
after a database is restarted, SPFILE does not change the current database setting of the parameter but will m
SPFILE so that this parameter will take effect when the database is restarted, and BOTH changes system para
current database instance and updates the SPFILE.

If the database listener does not use the default 1521 port (i.e., 1581), the XML DB service and FTP and HTTP listeners
dynamically registered to the listener. Therefore, you need extra setup steps. For example, if you have the following Oracl
defined in $ORACLE_ HOME/network/admin/tnsname.ora (or%0RACLE_HQVE% net wor k\ adm n\ t nsnane. or aon Wir

ORCLX =
(DESCRI PTI ON =
(ADDRESS_LI ST =
(ADDRESS = (PROTOCOL = TCP) (HCBT = nyl apt op) (PORT = 1581))
)
(CONNECT_DATA =
(SERVER = DEDI CATED)
(SERVI CE_NAME = ORCLX)
)
)

and you have the listener defined in the following section of the listener.ora:

LI STENER =
(DESCRI PTI ON_LI ST
(DESCR PTION =
(ADDRESS LI ST
(ADDRESS = (PROTCCOL
)
(ADDRESS LI ST =
(ADDRESS = (PROTCCOL
)
)

| PC) (KEY = EXTPROCO))

TCP) (HOST = nyl apt op) (PCRT = 1581))

)

then you need to configure the LOCAL_LISTENER parameter in the initialization parameter file referring to the TNSNAME
in the tnsnames.ora that points to the correct listener. You can run the following command in SQL*Plus to update the SF
SQ@ > ALTER SYSTEM SET di spat chers="' (PROTOCOL=TCP) (LI STENER=ORCLX)"' SCCPE=SPFI LE;

SQ@. > SHOW PARAMVETERS | ocal _li st ener;

Finally, you also need to shut down and restart the database as follows:

SQ@ > shut down i nmedi at €;
SQ@> startup

Oracle XML DB allows you to change the default configurations of the HTTP and FTP ports. However, that process is no
here, because the preceding setups are enough for you to get started to run the XML DB samples. Such management ar
are discussed in Chapter 12, which presents some tips and techniques for using the XML DB features.

Installing the Sample Database Schemas

The Oracle sample database schemas are used in the examples for the book. However, the installation of the sample sct
option when creating a database with DBCA in Oracle Database 10g. If the sample schemas are not installed during date
you need to start SQL*Plus to run the following command in the $ORACLE_HOME or %ORACLE_HOME% directory:

SQ > @eno\ schemsa\ mksanpl e <SYS PASSWORD> <SYSTEM PASSWORK> HR OE PM B SH Bl EXAVPLE TEM

Themksample.sql script requires you to supply the SYS and SYSTEM password followed by the password for the six sa
users, HR, OE, PM, QS, SH, and BI. To help remember the password for each user, you can specify the password same
names. For example, the password for user HR is HR. Then, you need to specify the default tablespace (i.e., EXAMPLE)
tablespace (i.e., TEMP), and the directory where you want the log file to be generated for the sample schema installation.

Upon installation, the sample schemas are created. The six sample schemas build up a general database schema for cor

management, which consists of different divisions represented by different users:
= HR The Human Resource division contains information about the company’s employees and the organizational struc
m OE The Ordering Entry division tracks the product inventory and fulfills purchase orders of products through different
m PM The Product Media division maintains the product-related information.
m QS The Quality Shipping division manages the shipping of the products to customers.
m SH The Sale History division tracks business statistics.
m Bl The Business Intelligence division provides decision support information.

The XML generation and Object-Relational (O-R) XMLType storage examples will use the HR schema, and the XML-bast
management samples will be built on the PM schema.

Creating a User to Run the XMLType Samples

You need to create a temporary user account to run the examples of XMLType in this chapter. For example, you can run
SQL commands in SYS user to create a user named demo:

CREATE USER deno | DENTI FI ED BY denp
DEFAULT TABLESPACE USERS
QUOTA 50M ON USERS
TEMPCRARY TABLESPACE TEMP;

This user needs to have the following privileges:
m CREATE SESSION
m CREATE TABLE
m CREATE PROCEDURE
m CREATE TYPE
m CTXAPP ROLE

You can grant the privileges as follows:
GRANT CREATE SESSI ON TO denp;
GRANT CREATE TABLE TO denw;
GRANT CREATE PROCEDURE to deno;
GRANT CREATE TYPE TO denv;
GRANT CTXAPP TO denp;

The first three privileges are granted for basic DDL operations. The third one has to be granted to create object types dur
Schema registration. The CTXAPP role is used to create and synchronize Oracle Text indexes.

Setting Up a WebDAYV Folder

WebDAV support in Oracle XML DB allows you to create WebDAYV folders in the Windows environment. It makes access
XML DB Repository just like accessing any other folder on your disk drive. The following instructions work through the prc
up a WebDAV Folder in a Windows XP system:

1. From the START menu, open My Network Places.
2. ClickAdd A Network Place, which allows you to pick up the kind of network place to add.

3. ClickNext, choose Choose Another Network Connect, and then type http://<host-name>:8080/ as the address. Y
usel27.0.0.1 or localhost for your hostname.

4. ClickNext. A window pops up asking for login information. You can type any valid database username and passwa
to XML DB. Note that different users may have different views of data because of the security protection in the XM
Repository.

5. Click OK. In the next wizard window, type in the name XML DB Repository and click Next.

http://

6. Deselect the Open Folder By Default option and then click Finish to complete the wizard.

7. Back in the window My Network Places window, you will now see that the folder XML DB Repository has been cre
inFigure 8-2.

" iy Mrhwssk Mlaces E
“le Edt Vew Feortm Tach Heb o

] T Jheath mﬁ-*_]_"]

waten Sl ry R P
Hetmerk Tesks g oathost 0BT oo
i Pt [0
S Ve reptrrh
% 5ok ip 4 horss o pnal
Y S

N v
k Lt

(i Fvie s

H Fdrog

i My e

)y ot
LY T Dacnarasta
T e e P

[

Figure 8-2: WebDAV folder created

Double-click the XML DB Repository folder icon. You will be asked to log in. You can use the same database username &
log in. The web folder opens, as shown in Figure 8-3.

Sl Et Yiew Pesrim Tach eb I3
Diak = 3 - Pheeh Pedn I K O30
e) g o o BT * B
N = Inimmet Addrew = Tios
itees g e ek OB "Wtk Frifer
ther Fas Y g o sk 00 bl ek Podler
Csn Tl vl ey
ik Folder
@ . [Chechc g i VT i e DM e, o OB X Dok

L} W Dotumarin
i thawed Doourasty
W e listeiehs aced

f=
|

Figure 8-3: Example Oracle XML DB Repository

Now that you have created the WebDAYV folder, any application that supports WebDAYV, such as Microsoft Word, can use
access or save files in the XML DB Repository. The setup of the folder is complete and will be used later.

= IO [T

[« Fprevious [nexr s |
What Is the Oracle XML Database?

As stated at the beginning of the chapter, the Oracle XML database refers to a collection of native XML technologies
in the database server. However, the native XML support is only one part of the XML infrastructure in the Oracle
database. The overall XML infrastructure in Oracle database provides both high-performance native XML support
and an extensible platform on which users can build and deploy their own solutions.

The native XML DB functionality is available without having to run through a separate installation process. The
extension platform is based on the Java Stored Procedures running in the Oracle JVM and the C-based external
procedures. You can build customized XML solutions using the XML functionality in the Oracle XDK to compliment
the existing native XML functionality. Figure 8-4 illustrates the overall XML infrastructure in the Oracle database.

XML DB Repository

C-base] PLASOL Packages C Eatermal Progedianes
SO XM Janea Seorvd Procedans

1 | AML Type | " | XDEK XML APs |_

- MNative XML Suppaort . Extensible XML Support

Figure 8-4: Oracle database XML support

In the native XML engine, the XMLType tables and views provide the storage of XML data. The XML DB Repository
provides an XML document repository that is optimized for handling XML documents, and the PL/SQL and SQL/XML
functions allow XML operations on SQL data and XML content. The Java and C XML programming APIs in the
Oracle XDK can be used to add functionality by building external procedures, such as creating a Java Stored
Procedure for SAX stream-based XML processing, which is not available as part of the native XML support.

Exploring the native XML features is the focus in this section. The examples for building Java or C extensions using
XDK will be included in later chapters to demonstrate the value of the entire Oracle XML infrastructure.

In the coming section, the following features will be demonstrated:
m The native XMLType data type used to store and manage XML documents
m XMLType functions and SQL/XML functions operating on XMLType datain SQL

m XML DB Repository and its protocols interfaces including the FTP, HTTP, and WebDAYV interfaces on
XMLTypes

m Oracle Text search on XMLTypes

m Oracle Advanced Queuing extensions for XMLTypes

XML Type

XMLType is the native data type for storing XML data in the Oracle database. It is similar to the DATE data type in
that you can use it to define table columns or use it as parameters, return values, or variables in the PL/SQL
procedures.

XMLType provides a set of built-in member functions that operate on XML content, enabling you to create an
XMLType instance from various resources, extract XML content, validate XML against XML Schemas, apply XSL
transformations, and so on.

Note The content stored in XMLType must be well-formed XML, or you will get an ORA-31011: XML parsing
failed error. All the entity references in the XML document will be resolved to ensure it is well formed
during the data insertion into XMLTypes.

The following example creates a product table called product with an XMLType column called description for
storing the product descriptions:

CREATE TABLE pr oduct (
id VARCHAR(10),
name VARCHAR2(100),
descri ption XM.Type);

You insert sample data into this table using the following SQL.:

I NSERT | NTO product (id, nane, description)
VALUES(' xdk', 'XM. Devel oper''s Kit"',
XM.TYPE(' <DESCRI PTI ON><KEYWORD>xdk</ KEYWDRD> is a set of
standar ds-based utilities that help to build XM. applications.
It contains XDK Java, C/ C++ conponents. </ DESCRI PTI ON>')) ;

In this example, the XMLType() construction function is used to create an XMLType instance from a string input.

As previously discussed, you can process XML by creating the PL/SQL procedures taking XMLType as parameters,
variables, or return types. To demonstrate this, you create a PL/SQL procedure, in which the descriptions of each
product are passed in as an XMLType parameter called p_desc. Using the UPDATEXML () SQL function, you
update this product description by substituting all of the <KEYWORD> elements whose content equals p_id that are
passed in by the p_name parameter:

CREATE OR REPLACE FUNCTI ON MYTRANSFCRM (p_desc I N XMLTYPE,
p_id I N VARCHAR2, p_nane | N VARCHAR?) RETURN XMLTYPE AS

v_result XM.Type;
BEG N

SELECT UPDATEXM_(p_desc,

"ITKEYWORD[text ()="""||p_id||"""]/text()',p_nane) INTOv_result

FROM dual ;

RETURN v _result;
END MYTRANSFORM

After you have created the PL/SQL procedure, you can run the following SQL command:

SQ > set long 10000
SQ > SELECT MYTRANSFCRM descri ption, id, name) FROM product;

You will see the following output:
MYTRANSFORM DESCR PTI ON, | D, NAVE)

<DESCR PTI ON> <KEYWORD>XM. Devel oper ' s Kit</ KEYWORD> is a set of
standards-based utilities that help to build XM. applications. It
contains XDK Java, C/ C++ conponents. </ DESCRI PTI ON>

When storing XML in XMLTypes, there are several storage options. Basically, you can create XMLTypes as:

m XML Schema-based XMLTypes Stored under an object-relational structure specified by a registered XML
schema unless you specify the storage options when creating the objects.

m Non XML Schema—based XMLTypes Stored in CLOBs.

The XML Schema defines how to “shred” the content of an XML document and store it as a set of SQL objects. For
example, you can register an XML Schema as follows:

BEG N
DBMS_XM_SCHEMA. r egi st er Schena(
SCHEMAURL=>' ht tp: //xm ns. oracle. com xn / cont ent . xsd' ,
SCHEMADOC=>' <?xml ver sion="1. 0" encodi ng="UTF- 8" ?>
<xs: schem
xm ns: xs="http:// ww w3.or g/ 2001/ XM-Schema" el ement FornDefault ="qual ifi ed">
<xs:el enent nanme="DESCR PTI ON"'>
<xs: conpl exType mnixed="true">
<xs: choi ce m nCccurs="0" maxOccur s="unbounded" >
<xs: el enment name="KEYWORD' type= "xs:string" maxQOccurs="unbounded"/>
</xs: choi ce>
</ xs: conpl exType>
</ xs: el emrent >
</ xs:schem>',
LOCAL=>TRUE
GENTYPES=>TRUE
GENTABLES=>FALSE) ;
END,;

In the Oracle XML database, each XML schema is registered under a uniqgue URL so that XMLTypes can identify
the XML schemas when referring to them. The preceding example uses the
http://xmIns.oracle.com/xml/content.xsdURL.

During the XML Schema registration, Oracle XML DB generates SQL objects to store XMLTypes that are complaint
with the XML schema and, optionally, generates a default table. This example does not generate the default tables
for the XMLTypes, but we will discuss this later in the “Oracle XML DB Repository” section. You can look at the
objects generated using the following SQL commands:

SQ> CGOLUWN obj ect _name format a30

SQ > COLUMN obj ect _type format a30

SQ > SELECT obj ect _name, object_type FROM user_obj ects;

The objects created by the XML Schema registration are listed as follows:

OBJECT_NAME GBJECT_TYPE
DESCRI PTI CN163_ T TYPE
KEYWORD164_COLL TYPE
PRODUCT TABLE
SYS_LCB0000042735C00004$%$ LOB

You will see the SQL object types created for each complex type in the XML schema, such as the
DESCRIPTION163_T and KEYWORD164 COLL. You can use the desc command to show the details of the
object types:
SQ > desc DESCRI PTI ONL63_T

DESCR PTION163_T i s NOT FI NAL

Name Nul |2 Type
SYS XDBPD§ XDB. XDB$RAW LI ST_T
KEYWCRD KEYWORD164_COLL

SQ > desc KEYWDRDL64 COLL
KEYWCRD164 _CO.L VARRAY(2147483647) OF VARCHAR2(4000)

A VARRAY of VARCHAR2(4000) is created for elements such as<KEYWORD> where its occurrence is
unbounded. By default, its size is 2147483647 bytes! Not only is the default size of VARRAY too large for storing
XML documents, the extra SYS_XDBPD$ column created to preserve the DOM fidelity of XML content may not be
needed by your application. To customize these storage modes, you can annotate the XML schemas. How can you
annotate the XML schema? What is the SYS_LOB0000042735C00004$$column? We will answer these kinds of
XMLType storage—related questions in Chapter 9.

By default, XMLTypes are stored in CLOBs unless you associate a registered XML schema URL with the XMLType
columns or XML Type object tables. For example, in the previous product table, the description column is an
XMLType in CLOB storage. Instead, you can define the column description as an XML Schema—based XMLType
using the registered http://xmins.oracle.com/xml/content.xsd schema as follows:

CREATE TABLE product (
id VARCHAR(10),
nanme VARCHAR2(100),
descri ption XM.Type)
XM.Type CCLUMN description
XM.SCHEMA "http://xm ns. oracle. com xm / cont ent.xsd"
ELEMENT " DESCR PTI ON';

Thedescription column uses the structured storage of XMLType. The following example shows that when inserting
the same XML data into XML Schema-based XMLType columns, you need to use the
XMLType.createSchemaBased XML ()function:

I NSERT | NTO product (id, name, description)
VALUES(' xdk', ' XML Developer''s Kit', XM.TYPE(' <DESCRIPTI O\>
<KEYWDRD>xdk</ KEYWORD> is a set of standards-based utilities that
hel ps to bui | d<KEYWORD>XM_.</ KEYWORD> applications. It contains XDK
Java, C/ G-+ Conponents. </ DESCRI PTI ON>'). Cr eat eSchemaBased XML (
"http://xm ns.oracl e.comi xm /content.xsd"));

http://xmlns.oracle.com/xml/content.xsd
http://xmlns.oracle.com/xml/content.xsd

Note If you do not specify the registered XML schema URL for XMLTypes using the
XMLType.createSchemaBased XML (), you will get the error - ORA-19007: Schema and element do not
match.

After XML is stored in XMLTypes, you can use the XMLType member functions to operate on the XML content. We
will discuss this with more examples in Chapter 10. In this section, we just look at a simple example, which extracts
XML nodes using the XMLType.extract() function. The following query extracts all <KEYWORD> elements in the
product description.

SQ@> SELECT p.description.extract('//KEYWORD) FROM product p;
P. DESCRI PTI ON. EXTRACT(' / / KEYWDRD)

<KEYWORD>xdk </ KEYWORD>

<KEYWCRD>XM_ </ KEYWORD>

XMLType Views

XMLType can be used to define views, called XMLType Views. For example, you can create an XMLType view
based on the employees table in the HR user schema:

CREATE OR REPLACE VI EW enpl oyee_vw AS
SELECT XMLELEMENT(" Enpl oyee",
XMLATTRI BUTES(enpl oyee_id AS "enpno"),
XMLFCREST(first_nane, last_name, job_id))AS result
FROM hr . enpl oyees;

You may not be familiar with the SQL/XML functions used in the example. Do not worry. We will discuss these in the
next section. Simply query the view, and you will see the XML content that is returned:

SQ@> SELECT * FRCM enpl oyee_vw WHERE ROWNUM<2;
RESULT
<Enmpl oyee enpno="100">
<FI RST_NAME>St even</ FI RST_NAME>
<LAST_NAME>Ki ng</ LAST_NAME>
<JOB | D>AD PRES</JCB_I D>
</ Enpl oyee>

From this example, you can see that the XMLType view provides an option to wrap up existing object-relational data
in XML, which then can be used for both Web publishing and data exchange. Additionally, XMLType views can
serve as an XML interface for XML-centric processing, such as XPath-based content navigation and updates. You
can build XMLType views based on XML schemas. The major difference between these XML Schema-based
XMLType views and XMLType views that are not based on XML schemas is that the XML Schema validation can
occur, which brings rich data-type constraints and XPath query optimization.

SQL/XML Processing
SQL is the standard for efficiently managing relational data. The XML extensions of SQL in Oracle XML Database

allow SQL operations previously limited to relational data to operate on XML data as well. Table 8-2 outlines the
overall functionality of SQL/XML and Oracle extension support in Oracle Database 10g.

Table 8-2: Basic Functions for SQL XML Processing

Type Function Description

Oracle SQL extensions EXISTSNODE() Takes an XPath expression and
returns true (1) if the XML
document contains the node
specified by XPath.

EXTRACT() Takes an XPath expression and
returns the node or node set
that matches the XPath.

EXTRACTVALUE() Takes an XPath expression and
returns the text of the XML
nodes that match the XPath.

UPDATEXML() Takes an XPath expression and
updates the XML nodes that
match the XPath.

XMLCOLATTVAL() Generates an XML fragment
converting each passed column
name to an attribute name-
value pair within a <column>
element.

SYS_XMLGEN() Generates XML from SQL
gueries passed as parameters.

XMLSEQUENCE() Returns a sequence of
XMLType using VARRAY of the
top-level elements.

SQL/XML functions XMLELEMENT() Creates an XML element in
XMLType by taking an element
name, an optional collection of
attributes for the element, and
the element content.

XMLATTRIBUTES() Used within XMLELEMENT() to
specify attributes of that
element.

XMLFOREST() Converts each of its argument

parameters to XML, and then
returns an XML fragment that is
the concatenation of these
converted arguments.

XMLCONCAT() Takes as input a series of
XMLType instances,
concatenates the series of
elements for each row, and
returns the complete series.

XMLAGG() Aggregates XML fragments to
build up an XML document.

By using Oracle SQL extensions and the SQL/XML functions for XML processing, you can easily leverage the
relational data model and XML data model in one SQL query. This gives you the maximum flexibility to solve
business problems. In the previous example, the SQL/XML functions are used to create XMLType views. We will
use additional SQL operators and functions in later chapters, and discuss the technical details of how to use these
SQL functions in Chapter 10.

[previous fuexr]

[« revious fnexr]
Oracle XML DB Repository

Oracle XML DB Repository is a queryable, hierarchically organized repository, which is ideal for managing
document- or content-centric documents in various formats including XML. With this repository, you can

m Store and view XML content stored in XML DB as a directory hierarchy of folders.

m Use the hierarchical metaphors, such as XPath and URLSs, to access XML documents and represent the
relationships between documents.

XML documents stored in the repository can be accessed through the protocol interfaces such as HTTP, WebDAV,
and FTP. In addition, you can access the repository from SQL and PL/SQL scripts using the two public views,
RESOURCE_VIEW and PATH_VIEW. We will discuss the Oracle XML DB Repository in detail in Chapter 10 and
the memory- and performance-tuning techniques for the repository in Chapter 12.

[« rreviovs [ecr s |

[« Freviovs [nexrs]

Oracle Text

XML data stored as XMLTypes in either CLOBs or XML Schema—based structured storage can be indexed by
Oracle Text. For example, to create an Oracle Text index and query the product table, you can use the following
code:
CREATE | NDEX desc_i dx ON product(description)

I NDEXTYPE | S CTXSYS. CONTEXT

PARAMETERS(' secti on group ctxsys. path_section_group');

Note You must have the CTXAPP role granted to create the Oracle Text indexes.

Thereafter, you can use the CONTAINS() function in SQL queries to search the XML content as follows:

SELECT name
FROM pr oduct
WHERE CONTAI NS(description, ' about (xm utilities)')>0;

Theabout() is provided in Oracle Text to allow semantic search. There are additional XML search capabilities. For
example, you can do the following:

m Use the ora.contains() function in XMLType.existsNode() for text searches within XPath-based searches.

m Use the HASPATH() and INPATH() operators to optimize XML data searches within the content specified by the
XPath expressions.

Additionally, Oracle Text searching capabilities are integrated into XMLType by introducing the new CTXXPATH
index. This is detailed in Chapter 11, where we will also discuss how you can create various SQL indexes on
XMLTypes, such as B*Tree indexes, bitmap indexes, and functional indexes to speed up queries on the XML
documents.

Oracle Advanced Queuing

Oracle Advanced Queuing supports XMLType as a message type. In other words, users can enqueue and dequeue
XML messages from and into XMLTypes. In later chapters, you will see examples using the XMLType message
qgueues and how to use XMLType functions for message processing.

[previous fuexr]

XML Database and Standards

At this point, we have introduced the broad extent of Oracle XML support. Equally important is that its XML
infrastructure is built on a family of open standards. These standards and the corresponding XML functionality are

summarized in Table 8-3.

Table Table8-3: XML DB Standards and Functionality

Standard
XML 1.0

XML Namespaces

XML Schema 1.0

DOM 1.0& 2.0

XSLT 1.0

XPath 1.0

XQuery 1.0

SQL/XML

Current Status

Extensible Markup Language 1.0
W3C Recommendation Oct. 2000
www.w3.0rg/TR/REC-xml

XML Namespaces
www.w3.0rg/TR/REC-xml-names

XML Schema 1.0
W3C Recommendation May 2001
www.w3.0rg/TR/xmischema-0

Document Object Model Level 2
W3C Recommendation Jan. 2003

www.w3.0rq/TR/DOM-Level-2-HTML

XSLT Transformation 1.0
W3C Recommendation Nov. 1999
www.w3.org/TR/Xslt

XML Path Language 1.0
W3C Recommendation Nov. 1999
www.w3.0org/TR/xpath

XML Query Language 1.0
W3C Working Draft, Nov. 2002
www.w3.org/TR/xquery/

XML-Related Specifications
ISO-ANSI Working Draft

www.sqlx.org

[rrevious Jrecrs

Oracle XML Functionality

XMLType
DBMS_XMLPARSER (DOM
Parser)

XDK XML PARSERS (DOM
and SAX Parser) in C, C++
and Java

XML Schema-based
XMLType with XML DB XML
Schema annotations; used
as the basis

for mapping XML to SQL
data types
DBMS_XMLSCHEMA

XDK XML SCHEMA
PROCESSORS in C, C++
and Java

DBMS_XMLDOM
XDK DOM Parser in C, C++
and Java

XMLType.transform()
DBMS_XSLPROCESSOR
C/C++ XDK XSL Processor
in C, C++ and Java

Used for hierarchical
gueries against XML
documents:
XMLType.extract()
XMLTypes.extractValue()
XMLType.existsNode()
The
selectNodes(),valueOf()
andselectSingleNode()
functions in:
DBMS_XSLPROCESSOR
XDK XML Parser in Java
XDK XSL Processor in C

Standard XML query
interfaces independent from
the storage model

SQL/XML functions
Oracle SQL extension
functions for XML
operations

WebDAV Web-based Distributed Authoring and WebDAV for Oracle XML

Versioning DB Repository
IETF RFC 2518 in 1999

http://asg.web.cmu.edu/rfc/rfc2518.html

HTTP 1.1 Hypertext Transfer Protocol WebDAV for Oracle XML
www.w3.org/Protocols/rfc26 16/ DB Repository
rfc2616.html DBURI Servlet

XML DB Servlet

FTP File Transfer Protocol FTP for Oracle XML DB

www.ietf.org/rfc/rfc959.txt Repository

We will cover these features in detail in later chapters. If you are not familiar with these standards, check out the
associated URLs in the Appendix.

[« Freviovs [et |

http://asg.web.cmu.edu/rfc/rfc2518.html

[« revious fnexr]
Designing the XML Database

When you start to design XML applications using Oracle XML DB, you need to make several decisions, including
how to store XML data in a database, what is the strategy to retrieve or generate XML, and how to create proper
indexes for searching the content in the XML documents. In this section, we will discuss some helpful approaches to
these decisions.

How to Store XML Data

As you have learned, there are different ways to store XML documents inside an Oracle XML database, and each of
them offers different trade-offs in both performance and functionality. From experience, we find that the design flow
depicted in Figure 8-5 is helpful in simplifying the selections.

__.--""-. ‘-.___\ Relatdonal
- PR T P
- k‘ﬂ.l |'L.|-'|. [} Tables NSLL, SOL /XM
'--.MRI:-I.'.unnn. T.ahlﬁ‘_ . L .
\w/

XML Type
.z"‘"’ ."-._

-:.-""f:"-\.'ilulm.-l'-:.wd."' o Mo
“u Otomage! /
Yos
A
.--.' B

P e XML Type

{ XML Type in CLOB

~ %ML Type Table™., Column | XML Type Column
\\1' XML -|'| e i im Tables
\\ﬂ “;,'zl"'-
™
| XML Type
Table
-._x.
-._ Mo XML Type Tables
< "'“H” iy | Defined in QL

e

XML Type Defined
i XML Schema by
adb:defauliTable

Figure 8-5: Decision flowchart for storing XML in Oracle XML DB

By walking through this flowchart, you can explore the design strategy for using different storage types. First, you
can start by asking whether you need to store XML documents in relational tables or as XMLType objects. This
greatly affects the application development process, the technologies you use, and the performance of your
application.

XMLType or Relational Tables?

This initial decision can generally be based on the format of the XML data and the DOM fidelity requirement on XML
content. For format, the XML documents generally can be categorized as the data-centric or the document-centric
document.

Data-centric XML documents are characterized by the regular structure for the data, in which the smallest data unit
is either an XML element with simple content or an XML attribute. In such XML document, there is little or no mixing
content (i.e., tags within an XML element’s string content). Additionally, the DOM Fidelity for the document is not
required to preserve. The following XML document is an example data-centric XML document:

<?xm version="1.0"?>
<pur chaseQ der order Dat e="1999-10- 20" >
<shi pTo country="US">..</shi pTo>
<bi |l To country="US"'>..</bill To>
<itens>

<item partNunme"872- AA" >
<pr oduct Name>Lawnnower </ pr oduct Nane>
<quantity>1</quantity>

<USPri ce>148. 95</ USPri ce>
<comment >Confirmthis is el ectric</coment>

</[itenr ...

</itens>
</ pur chaseOr der >

All the data in the above purchase order document are represented either as XML elements or as the attributes for
XML elements.

Most of the data-centric XML documents are created based on the relational data for exchanging and sharing data
between applications. You can think of XML as the boxes used for moving things around. When relocating them to
another place, you need to put items in boxes in order to protect them and organize them for easy delivery.
However, when the items reach the destination, there is no need to keep them in the box.

Likewise, for data-centric XML documents, there is no need to keep data in XML once it reaches the database. For
a data-centric XML document, if XML elements and attributes are properly stored in relational table columns, it has
the optimized storage for further processing, which avoids the overhead of keeping and managing the XML structure
in the database. Whenever you need the data in XML for data exchange and Web publishing, you can build up
XMLType views to wrap up data in XML.

On the other hand, there are document-centric XML documents, which are characterized by less regular or irregular
data structure with lots of mixing content. For example, the following faq.xml is a document-centric XML document,
in which the <ANSWER>element contains the mixing content of both text and <KEY> and <CODE> elements.

<FAQ>
<TI TLE>What is wong if | got "Cl assNotFoundExcepti on"? </TI TLE>
<ANSVER> | f you get this kind of error, you need to check if the
<KEY>CLASSPATH</ KEY> i s correctly set. Basically you need to add the
foll owi ng <KEY>jar files</KEY> in your Java CLASSPATH environnment
vari abl e:
<CODE> xm parserv2.jar: XM. Parser V2 for Java
xschema.jar: XM. Schenma Processor for Java
Xsul2. jar(xsul2.jar): XM SQL Uility for Java

</ CCDE>
</ ANSV\ER>
<CATEGORY>xdk</ CATEQORY>
<LANQUAGE>] ava</ LANQUAGE>
</ FAQ>

Dealing with the document-centric XML documents, you can store them in the native XMLTypes that well preserves
the original XML data structure. If there are many queries on the XML content, the XML Schema-based XMLType is
suggested as it well maintains the XML structure in the database and provides high-performance data retrieval and
updates using the XML metadata.

However, sometimes no clear line exists between these two categories. A document may be highly structured
without mixed content, but still cannot be shredded into tables if it has some XML-specific information—such as
comments, processing instructions, and document order— that needs to be preserved. The following document
shows a variation of the previous purchase order that now contains processing instructions (PIs) in the XML content.
To keep the information, such as namespace prefixes, processing instructions, and even the order of the elements,
in the XML document, you can choose to use the native XMLType to preserve the DOM byte for byte.

<?xm version="1.0"?>
<?dm nanme="Wel come" ?>
<pur chaseQ der order Dat e="1999- 10- 20" >
<shi pTo country="US">..</shi pTo>
<?dm name="\¢| cone"?>
<bi Il To country="US">..</billTo>
<items>
<item part Num=" 872- AA" >
<pr oduct Name>Lawnnmower </ pr oduct Name>
<quantity>l</quantity>

<USPrice>148.95</USPri ce>
<comment >Confirmthis is el ectric</coment>
<litenmr ...
</litems>
</ pur chaseCOr der >

In general, when selecting between relational and native XML storage, you need to ask yourself whether your
application really needs the full XML document preserved. Otherwise, you should leverage the database’s ability to
generate XML from relational tables using XMLType views to void the overhead for preserving the XML markups,
the whitespaces for XML indentations, and so on.

Note that if you store XML in relational tables but construct XML interfaces with XMLType views that are deeply
nested, the data queries and operations with many table joins may degrade the performance. In this case, you
should choose the native XMLType data type because it well preserves the hierarchical structure of the XML
documents and thus optimizes the related XML queries or operations.

Finally, the native XML Schema—based XMLType storage binds the underlying database schema tightly to the XML
schemas. Currently, there are limitations on how much the schema can evolve before an export and import of the
data set would be needed.

XML Schema—Based Types or CLOB XMLTypes?

If you decide to use XMLType, you need to decide whether you want to store XML in CLOBs or use the XML
Schema—-based XMLTypes by shredding the XML content and storing it in a set of SQL objects.

If you store XML in CLOBs, you keep the document in the original format byte for byte and can use the XMLType
functions and the SQL commands to update and query the XML data. This type of storage is optimum for DTD-
based documents and XML Schema—-based documents where the schemas are changing or varied. Since the
storage is not based upon the XML structure, documents of any size and hierarchical depth can be accommodated
equally. However, since the XML data is not stored in a preparsed structure, it takes time to parse the documents
before accessing the XML content. If your application requires intensive data retrievals or updates on XML element
or attributes, or you want to extract the data out of XML documents for different use, you should not use the CLOB
storage.

In the XML Schema—based XMLTypes, the XML documents are shredded and stored as a set of SQL objects. The
XML content is validated and stored in a preparsed format. This storage is optimized in database for the fine-grained
data queries and retrievals. Because this kind of XMLType is stored using offsets based on its XML Schema, called
XML Objects (XOBSs), and not materialized into the DOM tree until needed, it saves system resources. In addition,
you have the option to preserve the byte-for-byte DOM fidelity, such as the order of XML elements and attributes,
the whitespace between elements and attributes, XML comments, XML Pls, namespace declarations, and so on.
However, XML Schema-based XMLTypes have high cost for schema evolutions.

Note Because extra information is needed to preserve the DOM fidelity, you should avoid using it unless
necessary.

After discussing all the storage models for XML documents in the Oracle Database 10g database, Table 8-4
compares the three types of XML storage and show the pros (+) and cons (-) based on the different application
design considerations.

Table 8-4: Comparison of XML Storage

Category

Modeling

Loading

Query

XML fidelity

Data replication

In summary, using the relational tables to create XMLType views or simply deliver XML encapsulated output using
SQL/XML functions or the DBMS_XMLGEN package, you have the normalized data storage with high-performance

Relational Storage
with XMLType Views

(+) Relational modeling
with data normalization
(+) Relational storage
that handles the
schema evolution well
(+) No XML overhead
after data is stored

in database

(+) Easy reuse of

the data

(-) Low throughput for
data uploading

(+) High performance
for SQL queries

(-) Requires table joins
for XML queries

(+) No DOM fidelity

Full support

CLOB XMLType

(-) No data
normalization
(+)Flexible storage
when XML Schemas
evolve or document
size varies

(~) Document view of
the XML data prevents
reuse as SQL data

(+) Fast XML
uploading

(-) Low performance
for XPath queries with
run-time DOM building
and DOM tree
transversal.

(+) Maintains the
original XML byte for

byte

Full support

SQL queries. However, the DOM fidelity of the XML documents is lost.

Schema-Based
XMLType

() No data
normalization

(-) Limited XML
Schema evolution
support

(+) Data reused by
building up multiple
views on XML data

(-) Low throughput for
data uploading

(+) XPath queries are
rewritten to SQL
queries for high-
performance data
retrieval

(+) DOM fidelity as an
option when setting the
xdb:maintainDOM=
“true”

Limited support

The CLOB storage best preserves the original XML document and has the flexibility to handle XML Schema
evolution. However, the run-time DOM building and DOM tree transversal slows down the SQL queries.

The XML Schema—based XMLTypes store XML in Object-Relational tables preserving the XML document with high-
performance SQL queries resulting from query rewrite support. However, it has limited support of XML schema
evolution and limited data replications support. You should analyze your application requirements and pick the best
storage that meets your needs.

XMLType Object Tables or XMLType Columns?

Creating XMLType as a table column or as an object table is determined by whether you want to store relational data
along with the XML documents. If there is relational data associated with the XML documents, such as the
document create time and the current owner of the XML document, you can create a set of columns in relational
tables to store such information and use XMLType columns to store XML documents.

On the other hand, there are options on how to create XML Type object tables. You can create an XMLType object
table using the “CREATE TABLE ... OF XMLType” command or create the XMLType object table when registering
XML schemas to the Oracle XML DB. However, the latter option allows you to use the Oracle XML DB Repository to
manage the XML documents. By looking at what the Oracle XML DB Repository offers and what you need or how
you can take advantage of the functionality, you can decide how to create the XMLType object tables.

Use Oracle XML DB Repository?

To use the Oracle XML DB Repository, you need to create XMLType tables by specifying the xdb:defaultTable
attribute for the root element of the XML document in the XML schema. After you do so, Oracle XML DB will create
XMLType Object tables when registering the XML schemas. Using XML DB Repository, you have the high-
performance hierarchical document navigation and easy-to-use protocol interfaces for document management.

How to Retrieve and Generate XML

After you decide how to store XML documents, you need to figure out how to build the indexes and views for

guerying XML data, generating new XML based on the existing XML/non-XML data, and securing the XML data by
controlling user access. We will discuss the details of these XML features in Chapter 11 and explore several
solutions in the application development chapters.

How to Search XML Data

In Oracle Database 10g, there are two ways to search XML data using the XPath-based queries: Oracle Text
searches using the CONTAINS() function and the XPath search using the XMLType.existsNode() function. In
Oracle Database 10g, you can produce efficient searches by creating the CTXXPATH index for the
XMLType.existsNode() queries. We will discuss this in Chapter 11.

How to Design XML Database for Web Applications

XML is widely used in content management and Web publishing systems. One of the reasons is that data in XML
format can be easily transformed using XSLT to various presentation formats, such as HTML, WML (Wireless
Markup Language), SVG, or any other Web publishing format that clients request. These kinds of applications
normally have the structure shown in Figure 8-6.

| HIML Formats |

XML H | T
Cratabuase i L] B ; Wil
XSLT - r—ed

[File p A Eo WG

Violoe XML

Figure 8-6: XML-based web application architecture

In this type of application, an XML document can be stored in XML Schema—based XMLTypes so that you can
extract the data for different content-publishing purposes and uses the Oracle XML DB Repository for easy
document management. To reuse the XML data, XMLType views can be created, which provide “pretransformed”
XML documents. Finally, indexes are usually created for frequently executed queries to speed XML retrieval from the
database.

How to Design XML Database for Messaging Application

XML is widely used for application integration where applications run on different platforms or are from different
vendors that need to exchange the application data. Figure 8-7 illustrates the architecture of an example XML-based
messaging system. In this kind of application, you should think about using precompiled XSLT or XMLType views to
transform the XML data into appropriate formats for the application receiving the XML messages.

Database Database

-

¥ XMl

Messages

Message Consumer

L4

Message Producer

Figure 8-7: XML messaging application

[« Freviovs [nexrs]

[« Freviovs [nexrs]

Summary

The Oracle XML DB provides high-performance XML functionality seamlessly integrated with SQL. The standards-
based XML loading, update, query, and transform interfaces greatly simplify your working with XML. Additionally, the
Oracle Database 10g database provides an extensible platform from which the Oracle XDK can be used to build
your customized solutions. Oracle Database 10g is a platform for building and deploying successful XML
applications; however, you still need to follow some simple design steps to make best use of it. Now we are ready to
show you the technical details of the Oracle XML DB functionality.

[« Frevious Jiecr |

[rrevious e]
Chapter 9: Storing XML Data

In Oracle Database 10g, you have a number of choices for storing XML data. You can shred the XML documents
and store the data in one or more relational tables, put them intact in CLOB XMLTypes, or register an XML schema
and store them in an XML Schema-based XMLType with object-relational storage. If there is no requirement for
updating the XML content, you can also store the XML documents externally by creating External Tables.

This chapter gives an overview of the XML storage options available in Oracle Database 10g and shows you various
examples of how to use the technologies. You will also learn how to use the Oracle utilities including the
SQL*Loader and XML SQL Utility (XSU) to load XML documents into either XMLType tables or relational tables in
Oracle Database 10g. We start with the simplest storage format: the CLOB XMLTypes.

Storing XML Documents in CLOB XMLTypes

Using the CLOB XMLType, XML documents are stored as CLOBs with a set of XML interfaces provided by the
XMLType. Though you can optionally carry out any XML processing during the data ingestion, such as validating the
input XML against an XML schema or a DTD, the CLOB XMLType storage does not require any XML processing
except well-formedness checking and entity resolution.

Updating and Querying CLOB XML Types

The CLOB XMLType storage best preserves the original format of XML documents and gives the maximum flexibility
for XML schema evolution. However, storing XML documents in CLOB XMLTypes results in expensive processing
overhead when querying the XML content, such as using the XMLType.Extract()orXMLType.ExistsNode()
functions, because these operations require building an XML DOM tree in memory at run time and performing
functional XPath evaluations. In addition, any update operation can be performed only at the document level. This
means that you need to update the entire XML document for even a small change to one XML element. Therefore,
normally you should avoid using XML Type functions to perform fine-grained XML updates or XPath-based queries
on CLOB XMLTypes.

Instead, for XPath-based queries on CLOB XMLTypes, Oracle Text provides a full text search supporting a limited
set of XPaths. This functionality allows you to perform XPath queries on CLOB XMLTypes utilizing the CONTEXT
index created by Oracle Text, and it has proven very useful and scalable for enterprise applications, which we will
discuss in Chapter 11.

Dealing with Character Encoding for CLOB XML Types

When storing XML documents in the Oracle database, you should know that a character set conversion is
automatically performed during data insertions, which converts all the text data, including XML documents, to the
database character set, except when stored as BLOB, NCHAR, or NCLOB data types.

Because of this implicit character set conversion, the actual XML data encoding and the encoding declaration in the
<?XML?> prolog may not be the same. In the current Oracle Database 10g release, XMLType APIs ignore the
encoding declaration in the <?XML?> prolog and assume that XML data in CLOB XMLTypes is stored in the
database character set. Therefore, when loading XML data from the client side, you need to make sure this
conversion is properly performed.

To ensure proper conversion from the client character set to the database character set, you are required to set up
the NLS_LANG environment variable to reflect the client character set encoding if the XML document is originally
stored in a client character set that is different from the database character set. Otherwise, if the variable is set to be
the same as the database character set, the original text will be stored as-is in the database without character
validation and conversion.

In other words, if the NLS_LANG environment variable is not set or is set incorrectly and the XML document does
not have the same encoding as the database, garbage data will be stored in the database.

Note If the XML document contains characters that are invalid in the database character set, you will get an
Invalid Character error during the data insertions to CLOB XML Types. The current solution for this is to
use the NCLOB or BLOB for data storage in the database and build mid-tier XML applications or PL/SQL
external procedures using the XDK APIs to process the XML data.

Because the character set conversion may result in conflict between the actual encoding and the encoding
declaration in the <?XML?> prolog, when reading the XML data out of CLOB XMLTypes, you must do the reverse
character set conversion or update the encoding declaration in the <?XML?> prolog to make them consistent. This
is important because although an XML parser can use the first 4 bytes of the <?XML?> prolog to detect the
encoding of XML documents, it can determine only whether the character encoding is an ASCll-based encoding or
EBCDIC encoding. If it is an ASCIl-based encoding, an XML parser can detect only whether it is UTF-8 or UTF-16.
Otherwise, it depends on the encoding attributes in <?XML?>. Therefore, if you have XML documents not in UTF-8
or UTF-16 encoding,youmustinclude a correct XML encoding declaration indicating which character encoding is in
use, as follows:

<?xm version="1.0" encoding='Shift-JI S ?>

[« Frevious Jiecr |

[« revious fnexr]
Storing XML Documents in XML Schema—based XMLTypes

To speed up the XPath queries and fine-grained updates on XMLTypes, you can create XML Schema-based XMLTypes.
this is to associate registered XML schemas with the XMLType columns or XMLType tables using XMLSCHEMA. You ca
XMLType tables by specifying the DEFAULT TABLE annotation in the registered XML schemas.

All these approaches create XML Schema—based XMLTypes, where sets of object-relational tables/objects are bound to
defined in the XML schema. The only difference between creating a default table during XML schema registration and usi
XMLSCHEMA keyword is that the former approach allows XML documents conforming to the registered XML schema to |
Oracle XML DB repository. With the support of the XML DB repository, you can not only retrieve or update XML in SQL, k
XML documents stored in the XML DB repository using protocol interfaces such as FTP and HTTP/WebDAV.

XML Schema Registration

XML schema registration defines the XML-to-SQL mapping and a hierarchical object-relational structure for storing XML ¢
Oracle database. We will explore this using the DEMO user and the WebDAYV folder created in Chapter 8.

First, you need to copy the XML schema for customer records, contact_simple.xsd, into the /public WebDAYV folder. TF
content of this schema:

<xsd: schema xn ns: xsd="htt p:// www. w3. or g/ 2001/ XM_Schema" >
<xsd: el ement nane="Qustoner" type="CustomerType"/>
<xsd: conpl exType name="Custoner Type" >
<xsd: sequence>
<xsd: el ement nanme="NAMVE" type="xsd:string"/>
<xsd: el ement name="EMAI L" type="xsd:string"/>
<xsd: el enent nanme=" ADDRESS" type="xsd: string"/>
<xsd: el ement nanme="PHONE" type="phoneType"/>
<xsd: el enent nane=" DESCRI PTI ON" type="cont ent Type"/>
</ xsd: sequence>
</ xsd: conmpl exType>
<xsd: conpl exType name="ContentType" m xed="true">
<xsd: sequence>
<xsd: any m nQcurs="0" maxQOccur s="unbounded" processCont ents="skip"/>
</ xsd: sequence>
</ xsd: conmpl exType>
<xsd: si npl eType name="phoneType" >
<xsd:restriction base="xsd:string">
<xsd: pattern val ue="\(\d{3}\)\d{3}-\d{4}"/>
</ xsd: restriction>
</ xsd: si npl eType>
</xsd: schema>

To register this XML schema to the XML DB, you can call the following PL/SQL procedure:

ALTER SESSI ON SET EVENTS=' 31098 trace name context forever';
BEG N
DBMS_XM_SCHEMA. regi st er URI (
"http://1ocal host: 8080/ public/contact_sinple.xsd",
"/ public/contact_sinple.xsd,
LOCAL=>TRUE, CGENTYPES=>TRUE, GENBEAN=>FALSE, GENTABLES=>TRUE);
END;

Note To use the ALTER SESSION command, you need to log in as SYS and grant the ALTER SESSION privilege tc
using “GRANT ALTER SESSION TO DEMO”. Otherwise, you will get an ORA-01031: Insufficient Privileges err

In the DBMS_XMLSCHEMA.registerURI() function, the first parameter is the schema URI,
http://localhost:8080/public/contact simple.xsd, which uniquely identifies the registered XML schema in the XML DB.
parameter is an XML DB URI (XDBUFri), /public/contact_simple.xsd, pointing to the contact_simple.xsd file in the /publ
DB repository. The following parameters control whether the XML schema is registered as a local (LOCAL=>TRUE) or gl
(LOCAL=>FALSE) schema, whether object types (GENTYPES=>TRUE) and default tables (GENTABLES=>TRUE) will t
GENBEAN parameter is optional and does not perform any function at this time. If the XML schema is registered as a glo
the XML DB, it can be shared across different database users. Otherwise, XML schema sharing is not allowed.

http://localhost:8080/public/contact_simple.xsd

You can set GENTABLES=>FALSE if you do not want Oracle XML DB to create default tables during the XML schema rt
case, you can create XML Type tables using the XMLSCHEMA keyword, as in:
CREATE TABLE customer_xmtype tbl OF XM.TYPE
XM.SCHEMA "http://local host: 8080/ public/contact_sinple.xsd"
ELEMENT "Custoner";

Additionally, you can use the following syntax to define XMLType columns using XML Schema-based storage:
CREATE TABLE customer _col _thl (
i d NUVBER,
record XML.Type)
XMLTYPE OQOLUMN record STORE AS OBJECT RELATI ONAL
XMLSCHEMA "http:/ /1 ocal host:8080/ publi c/ cont act _sinpl e. xsd"
ELEMENT "Customer”;

Since the same storage techniques apply to both XMLType tables and XMLType columns, we will discuss only the details
Schema-based XML Type tables in later sections.

During XML schema registration, you can use the following command to create a trace file in the USER_DUMP_DIR sho
to create the object tables and datatypes:

ALTER SESSI ON SET EVENTS=' 31098 TRACE NAME CONTEXT FCOREVER,

To locate the trace file, you need to check the current session ID by querying the V$SESSION and VSPROCESS views.
from the V$SESSION and V$PROCESS views in the DEMO user, you need to log in as SYS and grant to the DEMO use
priviege on V_$SESSION and V_$PROCESS views, as follows:

$70Aa4i e, cYd
Note Since V$SESSION and V$PROCESS are just synonyms for the views, you cannot grant any privileges on then

By issuing the following SQL command, you can find the ID of the session corresponding to the trace file:

SELECT a. spid

FROM VBPRCCESS a, V$SESSION b
WHERE a. addr =b. paddr

AND b. audsi d=userenv(' sessionid');

This returns the following:
SPI D

The trace file has a name structured as orclX_ora_<Session_ld>.trc, and you can get the USER_DUMP_DIR by issuin
command in a SYS user account:

SQ.> SHOW PARAVETERS user_dunp_dest
NAVE TYPE VALUE

user _dunp_dest string D: \ ORACLE\ ADM N\ ORCL X\ UDUMP

Thus, the trace file is orclX_ora_2796.trc,in the USER_DUMP_DIR verified by running the following:

SQ@ > host |Is d:\oracle\adn n\orcl X\udunp\orcl X ora_2796.trc
orcl X ora_2796.trc

Because this file lists the set of DDLs used to create the object table and data types, it is a good reference when debugg
registrations.

Now, let’'s examine the created storage structure in more detail by issuing the following command in SQL*Plus:

SQ@ > SELECT obj ect _name, object_type

2 FROM USER_OBJECTS

3 WHERE object_name LIKE ' %Cust oner % ;
OBJECT_NAME OBJECT_TYPE
Cust oner 260_TAB TABLE
Cust orrer 260 _TAB$xd TRI GGER

Cust onmer Type259_T TYPE

The result shows that three objects were created during the XML schema registration. If you further examine the types ar
definitions, you will see that the objects created are not limited to these. First, you can describe the Customer260_TAB t

SQ@.> DESC " Cust omer 260_TAB";

This results in the following:

TABLE of SYS. XMLTYPE(XM_Schena "http://|ocal host: 8080/ public/contact _sinple.xsd" El ement
Customer") STCRACE Obj ect-relational TYPE "CQustonerType259 T"

Note If an XML element uses mixed case or lowercase, the default table and object names by default will be case se
you need to use double quotes when referring these names, as in “ Customer260_TAB”.

The preceding description shows that:
m Customer260_TAB is an XMLType table.

m The XMLType objects in the table are associated with the registered XML schema, http://localhost:8080/public/coi

m The root element of the XML document is <Customer>.
m The object type used to store the XMLTypes is Customer Type259 T.

Looking at the description of Customer Type259 T, you can see that this type contains

SQ@ > DESC " Cust oner Type259_T"
"Customer Type259 T" is NOT Fl NAL

Name Nul I ? Type
SYS XDBPD$ XDB. XDB$SRAW LI ST_T
NAMVE VARCHAR2(4000 CHAR)
EMAI L VARCHAR2(4000 CHAR)
ADDRESS VARCHAR2(4000 CHAR)
PHONE VARCHAR2(4000 CHAR)
DESCR PTI ON cont ent Type257_T

All the XML elements in XMLTypes are mapped to the corresponding database data types. In this example, the NAME, E
and PHONE elements as simple types in the XML schema are stored as VARCHAR?2. Since there is no limit on the string
schema, Oracle XML DB sets 4000 characters as the default length for these columns. On the other hand, new object tyj
the complex types defined in the XML schema. In this example, contentType257_T is created to store the customer des:
further shown as follows:

SQ@> DESC "content Type257_T";
"content Type257_T" is NOI' FI NAL

Narmre Nul | ? Type
SYS XDBPD$ XDB. XDB$RAW LI ST_T
SYS_XDBANY258% VARCHAR2(4000 CHAR

Note that Oracle XML DB defines the SYS_XDBANY258$ column as a VARCHAR2 (4000) to store the <xsd:any/> elem
<DESCRIPTION> element. The SYS_XDBPD$ column is a position descriptor column created by the XML DB to preserv
of XML documents. Information, such as comments, processing instructions, namespace prefixes, and the order of siblin
stored in this SYS_XDBPD$ column. Therefore, this column is used to preserve the integrity of the original XML documer
transversals.

To examine further details of the Customer260_TAB table, you can query the USER_TAB_COLS view:

SQ > SELECT col utm_nane, dat a_t ype,
2 CASE WHEN hi dden_col um="YES' THEN ' hi dden’
3 WHEN vi rtual _colum="YES THEN 'virtual'
4 ELSE nul |l END as attr
5 FROM USER TAB_CO.S
6 WHERE t abl e_nane=' Cust ormer 260_TAB'

http://localhost:8080/public/contact_simple.xsd

7 CORDER by virtual _columm desc, col um_nane;

CALUVMN_NAME DATA TYPE ATTR

SYS_NC_ROW NFG$ XMLTYPE vi rtual
XM_.DATA Customer Type259 T hi dden
ACLO D RAW hi dden
OMERI D RAW hi dden
SYS_NOQ0007$ RAW hi dden
SYS_N0014$ RAW hi dden
SYS_NC O D8 RAW hi dden
SYS_NQ0009% VARCHAR2 hi dden
SYS_NO0010% VARCHAR2 hi dden
SYS_N0011$ VARCHAR2 hi dden
SYS_N0012$% VARCHAR2 hi dden
SYS_N0016% VARCHAR2 hi dden
SYS_NO0008% XDBSRAW LI ST T hi dden
SYS_NO0015% XDBSRAW LI ST_T hi dden
XMLEXTRA XMLTYPEEXTRA hi dden
SYS_NQ0004$ XMLTYPEPI hi dden
SYS_NQ0005% XMLTYPEPI hi dden
SYS_N0013$ content Type257_T hi dden

Note that the CASE expression selects a result from one or more alternatives. It uses an optional SELECTOR, to specify
whose value determines which alternative to return. A normal CASE expression has the following form:

CASE sel ect or
VWHEN expressionl THEN resultl
VWHEN expression2 THEN resul t 2

VWHEN expressi onN THEN resul t N
[ELSE resul t N+1]
END;

From the query, you can see that the Customer260_TAB table contains one virtual column called SYS_NC_ROWINFO§$
columns, including XMLDATA, ACLOID, OWNERID, XMLEXTRA and a set of $SYS_NC<number>$ columns.

The virtual column, SYS_NC_ROWINFOS$, is an XMLType object that identifies the rows of the XMLType table. For exan
of XMLType tables, you can use :new.SYS_NC_ROWINFOS$ to refer to the current row of data.

The XMLDATA column refers to the SQL objects used for storing the XMLTypes. It is useful when you want to query or ¢
XMLTypes by directly working on the SQL objects. In the preceding example, XMLDATA is an alias for the Customer Ty
Therefore, you can add a unique constraint on the EMAIL element by referring to it as XMLDATA.EMAIL, as follows:

ALTER TABLE Cust ormer 260_TAB ADD UNI QUE(XMLDATA. EMAI L) ;

The XMLDATA.EMAIL refers to the object storing the content of the EMAIL elements in the customer records. With the L
added, if you try to insert the same customer record multiple times, you get the following error:

ORA- 00001: unique constrai nt (DEMO. SYS_(003626) vi ol at ed

Some of the hidden columns in Customer260_TAB are for Oracle XML DB repository use. For example, in Oracle XML [
Access Control List (ACL) defines the permissions for each resource. The ACLOID specifies the ACL permissions for the
the OWNERID specifies the ID of the table owner. The other hidden columns are used to create the hierarchical relations
elements.

Except for XMLDATA and SYS_NC_ROWINFOS$, you should never access or manipulate these XMLType table columns

XML Schema Annotations

To control the mapping between XMLType storage and XML schemas, you need to use Oracle XML DB annotations. In (
10g, these XML Schema annotations are a set of attributes added to an XML schema declaring the SQL object names, d
various storage options. All of these annotations are in the Oracle XML DB namespace, http://xmins.oracle.com/xdb, n
xdbprefix. Basically, you can use these annotations to specify the following:

m DefaultTable The name and storage attributes of the default XMLType table storing the XML documents.

http://xmlns.oracle.com/xdb

m SQLNames The SQL names for the XML elements defined in the XML schema.

m SQLTypes The names of the SQL data types used to store simple or complex data types defined in the XML schem.
unbounded XML element mapping to a collection SQL type, xdb:SQLCollType is used to specify the type name.

m MaintainDOM The attribute that tells Oracle XML DB whether to preserve DOM fidelity of the element on output.

m Storage Options The XML DB annotations, such as xdb:storeVarrayAsTable,xdb:mapUnboundedStringToLob,
xdb:maintainOrder, and xdb:SQLInline, specify the options for optimizing storage.

Let’s examine the following annotated XML schema for the customer records, customer_simple_ann.xsd, explore some 1
techniques, and then register it to the XML DB.

<xsd: schema xn ns: xsd="htt p:// ww. w3. or g/ 2001/ XM_Schema"
xm ns: xdb="http://xm ns.oracl e.com xdb" xdb: storeVarrayAsTabl e="true" >
<xsd: el ement nane="Qustoner" type="CustonerType"
xdb: def aul t Tabl e=" CUSTOMVER" / >
<xsd: conpl exType nane="Qust oner Type" xdb: mai nt ai nDOVE"f al se" >
<xsd: sequence>
<xsd: el ement nanme="NAME" type="xsd:string"
xdb: SQLNanme=" NAVE" xdb: SQLType=" VARCHAR2"/ >
<xsd: el ement name="EMAI L" type="xsd: string"
xdb: SQLName="ENAI L" xdb: SQType=" VARCHAR2" / >
<xsd: el ement name="ADDRESS' type="xsd:string" maxOccurs="unbounded"
xdb: SQLNane=" ADDRESS" xdb: SQCol | Type="ADDRESS_TYPE"
xdb: SQLType="VARCHAR2" xbd: mai nt ai nOrder="f al se"/ >
<xsd: el ement name="PHONE" type="phoneType" xdb: SQLNanme="PHCONE"/>
<xsd: el ement nanme="DESCRI PTI ON' type="content Type"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType nane="cont ent Type" mi xed="tr ue"
xdb: SQLType="CLOB" xdb: mai nt ai nDOVE"t r ue" >
<xsd: sequence>
<xsd: any m nOccurs="0" maxCOccur s="unbounded" processContents="skip"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd:si npl eType name="phoneType" >
<xsd:restriction base="xsd:string">
<xsd: pattern val ue="\ (\d{3}\)\d{3}-\d{4}"/>
</xsd:restriction>
</ xsd: si npl eType>
</xsd: schema>

Looking at the preceding example, the first thing to do when annotating the XML schema is to include the Oracle XML DE
declaration,xmlIns:xdb="http://xmIns.oracle.com/xdb”, in the <schema> element. This namespace prefix is then used

Oracle XML DB annotations.

Next,xdb:storeVarrayAs Table="true” is a global XML DB annotation, which tells the XML DB to store all the VARRAY ¢
object tables. This annotation helps to speed up the queries on XML elements that are defined with maxOccurs> 1. For:
customer_simple_ann.xsd, this annotation affects the storage of the <ADDRESS> elements.

In addition, you can specify an XML DB annotation xdb:mapUnboundedStringToLob="true” in the <schema> elemen
strings to CLOB and unbounded binary data to BLOB with out-of-line table storage. By default, it is set to be false so that
strings defined in the XML schema map to VARCHAR2(4000) and unbounded binary data maps to RAW (2000) with inline
Since inline table storage does not efficiently store large XML documents, you should set xdb:mapUnboundedStringTo

For all the global complex and simple types, you can define the following XML DB annotations to specify the correspondir
data types:

m xdb:SQLType Specifies the SQL type mapped to the XML schema type definition. You can use this annotation to av
DB generate names for the SQL data types.

m xdb:maintainDOM Specifies whether the complex type should maintain DOM fidelity. Normally, you should set this ti
the XML DB by default will add the SYS_XDBPD$ attribute (position descriptor) to each created object type to preser
as comments, processing instructions, and the sibling element orders in XML, and thus increases the storage overhe
avoid maintaining the DOM fidelity in the customer records, xdb:maintainDOM="false” is set on CustomerType.

http://xmlns.oracle.com/xdb

Note xdb:SQLName is not allowed on the complexType or simpleType definitions. Otherwise, you will get the fo
30937: No schema definition for ‘'SQLName’ (namespace ‘http:/xmins.oracle.com/xdb’) in parent ‘complex’

For the root element of the XML document, you should specify the xdb:defaultTableattribute and optionally use xdb:tab
table attributes:

m xdb:defaultTable Specifies the name of the table into which XML instances of this schema should be stored. It esta
between the XML DB repository and this default table so that any insertion, update, or deletion of the XML document
XML schemain the XML DB repository will have the corresponding changes in the default table, and vice versa. In tt
customer table will be created as the default table.

m xdb:tableProps Specifies the default table properties in SQL syntax that is appended to the CREATE TABLE clause

For all XML elements, you should specify the element names and the element type if the type they are based on is not an
types defined in the XML schema that have already been annotated. The following lists the XML DB annotations for the X

m xdb:SQLName Specifies the name of the SQL object that maps to the XML element.
m xdb:SQLType Specifies the name of the SQL type corresponding to the XML element.

m xdb:SQLInline Specifies whether Oracle XML DB should generate a new object table and define XMLType REFs to
elements. The default setting is true, which specifies not to define REFs. The true setting of this annotation affects ¢
elements declared in the XML schema and the XML element with maxOccurs> 1. You need to set this to false for o
This will give better performance by avoiding table locks.

m xdb:SQLCollType Specifies the name of the SQL collection type corresponding to the XML element that has maxO
example, in the <ADDRESS> element, the xdb:SQLCollType="ADDRESS_TYPE" is added. By default, the collectior
VARRAY. Because xdb:storeVarrayAs Table="true” is set, the storage of the VARRAY is a Ordered Collections in
instead of LOBs (default). This is useful when you want to create constrains on the element.

Instead of covering all the possible annotations, we listed the most frequently used XML DB annotations. In summary, yol
following points in mind when annotating XML schemas.

First, you should specify the name of the default table using xdb:defaultTable and a SQL name for each XML element a
XML schema using xdb: SQLName, xdb:SQLCollType, or xdb:SQLType. You should notice that, in the example:

m xdb:SQLName defines the SQL names for the XML elements
m xdb:SQLCollTypedefines the SQL names only for the XML elements with maxOccurs>1.

m xdb:SQLType defines the SQL names for all the complexTypes or the simpleTypes that do not use the default mapg
Oracle XML DB.

Specifying the SQL names using XML schema annotations is useful because the system-generated names are not easy"
should also consider specifying all SQL names capitalized to eliminate case-sensitive names in the database, which requi
quotes when referring to the SQL objects. For example, without capitalization, you have to use “ Customer260_TAB” vers
CUSTOMER260_TAB to refer to the default table storing the customer records.

Note For XML elements and types, if no xdb: SQLName, xdb:SQLType, or xdb: SQLCollType is specified, Oracle ’
name of the element or data type to create the SQL name. Because XML is case sensitive, the SQL name will
requiring you to use quotes around it for all references. These annotations are also useful if the XML element o
or has a name conflict in the XML schema.

Next, you should define the storage minimizing any extra data storage, such as avoid preserving DOM fidelity. It is also ut
trees or complex types as CLOBs by setting the xdb: SQLTypes =“*CLOB” when no XPath-based queries on the conten
Oracle XML DB will not shred this XML data, thus saving time and resources.

Finally, when working with small but unbounded XML elements you should store the content as VARRAYs by setting the

xdb:storeVarrayAs Table="false”. For large unbounded XML elements, you can instead use nested tables by specifyin¢
xdb:storeVarrayAsTables="true” in the <schema> element or even use nested tables by setting xdb: maintainOrder=
element for better performance.

XML Data Loading

After you have defined the XMLType storage, you can load data into XMLType tables by using SQL, the protocol APIs, ol
utility.

http://xmlns.oracle.com/xdb

Using SQL Command

The simplest way to load XML data into XMLType tables is through the INSERT SQL command, such as in the following

I NSERT | NTO cust omer VALUES(XMLType(' <Cust oner >

<NAME>St eve Joes</ NAME>

<EMAI L>St eve. Joes@xanpl e. conx/ EMAI L>

<ADDRESS>Soner oad, Sonecity, Redwood Shores, CA 94065, U.S. A</ ADDRESS>

<PHONE>6505723456</ PHONE>

<DESCRI PTI ON>Very I nportant US Cust oner </ DESCRI PTI ON>
</Custoner>').Creat eSchemaBased XM_(

"http://1 ocal host: 8080/ public/contact_sinple_ann.xsd"));

Using this approach, you can construct the XMLType instance from XML in VARCHARZ2, CLOB, or BFILE and optionally
XMLType.CreateSchemaBased XML ()function to refer to a registered XML schema.

Without the XML Type.CreateSchemaBased XML ()function, you can insert XML into XML schema-based XMLTypes by ir
Schema reference in the root element of the XML document using the XML schema location attributes, including the xsi::
xsi:noNamespaceSchemalLocation attribute:

I NSERT | NTO cust orrer
val ues(XM-Type(' <Cust omer xni ns: xsi="http://ww. w3. or g/ 2001/ XM_Schema
-instance" xsi:noNamespaceSchenaLocati on="http://1| ocal host: 8080/ publ i c/
cont act_si npl e_ann. xsd" >
<NAME>St eve Joes</ NAVE>
<EMAI L>St eve. Joes @xanpl e. conx/ EMAI L>
<ADDRESS>Sorer oad, Sonecity, Redwood Shores, CA 94065, U.S. A</ ADDRESS>
<PHONE>6505723456</ PHONE>
<DESCRI PTI ON>Very Inportant US Cust oner </ DESCRI PTI ON>
</Custoner>'));

Thexmlns:xsi=" http://www.w3.0rg/2001/XMLSchema-instance” attribute declares the namespace for the XML Scher
xsi:noNamespaceSchemalocation=“http://localhost:8080/public/contact simple ann.xsd” attribute specifies the
schema URL. In this example, since the XML document doesn’t have a namespace, xsi:noNamespaceSchemalocatio
XML document contains a namespace, for example, the XML schema of the XML document defines a target namespace
targetNamespace="http://www.example.com/customer”, you need to use the xsi:schemalocation attribute as follov

xsi : schemaLocati on= "http://ww.exanpl e.com cust oner http://| ocal host:8080/ public/contact_

The attribute contains the targetNamespace,http://www.example.com/customer, and the URL of the XML schema,
http://localhost:8080/public/contact simple ann.xsd.

Using Oracle XML DB Repository Interfaces

The XML DB repository provides protocol interfaces, including FTP and WebDAV/HTTP interfaces, to insert XML and ott
documents. As discussed in Chapter 8, you can create a WebDAYV folder and use it to copy or edit XML files in the XML [
were another directory on your disk. When using the protocol interfaces, the XML document must have the XML schema
to ensure that the data is inserted into the default tables created during the XML schema registration. The following exam
interface to insert a customer record to the default customer table after registering the contact_simple_ann.xsd to the >

D:\>ftp

ftp> open | ocal host 2100

Connected to [Machi ne_Name] 220 [Machi ne_Nare].FTP Server (Oracle XM
DB/ Oracl e Dat abase 10g Enterprise Edition Rel ease X X. X X. X) ready.
User ([Machi ne_Nane]:(none)): denp

331 pass required for DEMD

Passwor d:

230 DEMO | ogged in

ftp> cd public

250 CW Conmand successf ul

ftp> put custonerl.xn

200 PCRT Command successful

150 ASCI| Data Connection

226 ASCI| Transfer Conplete

ftp: 444 bytes sent in 0.00Seconds 444000. 00Kbyt es/sec.

ftp> Is customerl. xm

http://www.w3.org/2001/XMLSchema-instance
http://localhost:8080/public/contact_simple_ann.xsd
http://www.example.com/customer
http://www.example.com/customer
http://localhost:8080/public/contact_simple_ann.xsd

200 PCRT GCommand successful

150 ASCI| Data Connection

custorer 1.xm

226 ASCI| Transfer Conplete

ftp: 15 bytes received in 0.00Seconds 15000.00Kbyt es/ sec.
ftp>bye

After the operations, the new customer record is inserted into both the XML DB repository in /public directory and the def
table. In addition to the two records inserted using SQL, there are now three records in the customer table:

SQ > SELECT count(1) FROM custoner;
COUNT(1)

We will discuss the XML DB repository features in the “Oracle XML DB Repository” section. For now, you just need to kn
what directory in the XML DB repository is used to store the XML document, the new customer record will always be inse
XMLType table as long as it refers to the corresponding URL of the registered XML schema.

Using SQL*Loader

SQL*Loader has been the predominant tool for loading data into the Oracle databases. In Oracle Database 10g, SQL*Lo.
loading XML data into XMLType columns or XMLType tables independent of the underlying storage. In other words, you ¢
method to load XML data to CLOBSs or object-relational XML Types. Additionally, SQL*Loader allows XML data to be loade
conventional and direct path methods. The conventional path is the default mode that uses SQL to load data into Oracle
direct path mode bypasses SQL and streams the data directly into the Oracle database files.

To load XML data using SQL*Loader, you need a control file describing the input data and the target table or table columi
insert two customer records as in customer3.xml and customer4.xml into the customer table, you can create a control
following:

LOAD DATA

| NFI LE *

| NTO TABLE cust oner

APPEND

XM.Type(XM.DATA) (
|l obfn FI LLER CHAR TERM NATED BY ', ',

XM.DATA LOBFILE(Iobfn) TERM NATED BY ECF
)

BEG NDATA

xm / cust oner 3. xm

xm / cust orer 4. xmi

The control file tells SQL*Loader to load data (LOAD DATA) by appending (APPEND) the new data contained within the
*) to the customer table (INTO TABLE customer). XMLType(XMLDATA) refers to new data as XML Type. Since this is a
operation, it means that SQL*Loader will load the new data without overwriting the old customer records. If you use REPL
old customer records will be deleted before new data is inserted.

Thelobfn operator is a FILLER field. In SQL*Loader, FILLER fields are used to collect the data from the inputs. In other v
fields are not mapped to any table columns; instead they are used to skip or select data from the input data. In this exam|
get the names of the XML documents after BEGIN DATA and the names are delimitated by comas (TERMINATED BY *,’
data in the files are delimitated by the end-of-file (EOF).

After the control file is created, you can set the $SORACLE_HOME\Win directory in your PATH environment and run the fc
invoke the SQL*Loader command-line utility sglldr:

D:\ >sqgl | dr useri d=deno/ denmp contr ol =cust onerLoad. ct|
SQ@*Loader: Rel ease X on Thu Jun 26 22:26:53 2003

(c) Copyright 2001 O acle Corporation. All rights reserved.
Commit point reached - |ogical record count 2

Theuserid specifies the username and password for the database user who owns the customer table. The control optic
filename for the control file. The result shows that two logical records are recognized by SQL*Loader. The further logging
sqlldr can be find in the <control_file_name>.log file. You can specify direct=yif you want to use the direct path mode t
data. Compared to the conventional path mode, the direct path mode is faster because it bypasses the SQL layer and str
the Oracle database files without invoking any triggers or constraint checking.

XML Schema Validation

During XML loading or after content updates on the XML Schema-based XMLTypes, Oracle XML DB simply checks to se
document is well-formed augmented with object checks instead of performing a full XML Schema validation. In other worc
performs only limited checks to make sure the XML document conforms to the object-relational storage. For example, the
whether the <PHONE> element exists before inserting the customer records. It will not stop the data insertion when the p
violate the string pattern defined in the XML schema.

To void invalid data that could be inserted into XMLTypes, you need to explicitly call for XML Schema validation. The simj
is to set up a TRIGGER before the INSERT actions as follows:

CREATE OR REPLACE TRI GGER cust oner _insert

AFTER | NSERT ON cust oner
FOR EACH ROW

DECLARE
doc XM.Type;
BEG N
doc : = :new. SYS_NC RON NFOS;
XM.Type. schemaVal i date(doc) ;
END;

After the trigger is created, full validation is performed when you insert sample data into the customer table:

| NSERT | NTO cust omer VALUES(
XM.Type(' <CUSTQVER xm ns: xsi ="htt p: / / wwv. w3. or g/ 2001/ XM_Schene- i nst ance"
xsi : noNanmespaceSchemaLocati on="htt p:/ /1 ocal host: 8080/ publ ic/
cont act _sinple_ann. xsd" >
<NAME>St eve Joes</ NAME>
<EMAI L>St eve. Joes@xanpl e. conx/ EMAI L>
<ADDRESS>Soner oad, Sonecity, Redwood Shores, CA 94065, U.S. A</ ADDRESS>
<PHONE>6505723456</ PHONE>
<DESCRI PTI ON>Very I nportant US Cust oner </ DESCRI PTI ON>
</ CUSTOMER>')) ;

Thus this example returns the following errors:
I NSERT | NTO cust oner

*

ERROR at line 1:

ORA-31154: invalid XM documnent

ORA-19202: Error occurred in XM processing

LSX-00333: literal "6505723456" is not valid with respect to the pattern
ORA- 06512: at "SYS. XM.TYPE", line 333

ORA-06512: at "DEMO. CUSTQMER | NSERT", |ine 5

ORA- 04088: error during execution of trigger 'DEMO. CUSTOVER | NSERT

As you see, the error message states that the phone number does not follow the string pattern defined in the XML schem
updated the phone number, you can try again:

SQ@ > INSERT | NTO custoner VALUEY(
XMLType(' <Cust oner xm ns: xsi="http://ww.w3. org/ 2001/ XM_Schena- i nst ance"
xsi :noNanmespaceSchenaLocati on="http://| ocal host: 8080/ publ i c/
cont act _sinple_ann. xsd" >
<NAME>St eve Joes</ NAVE>
<EMAI L>St eve. Joes @xanpl e. conx/ EMAI L>
<ADDRESS>Soner oad, Somecity, Redwood Shores, CA 94065, U S A
</ ADDRESS>
<PHONE>(650) 572- 3456</ PHONE>
<DESCRI PTI ON>Very | nportant US Custoner</ DESCR PTI ON>
</ CUSTOMVER>')) ;

The new valid customer record is inserted. You can check the XML Schema validation status of an XMLType object using
XMLType.isSchemaValid() function or the XMLType.isSchemaValidated() function:

SQ@> SELECT x.isSchemaValid() FROM custoner x;
X. | SSCHEMAVALI D()

1
0
.0

The preceding result shows that, so far, there is only one record in the table and it is valid against the XML schema. The
previously do not have a valid status. This is because the XMLType.schemaValidate() function validates the XMLType ¢
the validation status of XMLType objects in the XML DB.

Note Turning on full validation will have a significant negative effect on INSERT performance, thus should be used ol
usually better to do validation checks at the time of document creation or in the middle tier.

Oracle XML DB Repository

Oracle XML DB Repository can function as a file system in the Oracle database. Any data in the Oracle XML DB Reposit
resouce which has a pathname (or a URL) and is stored either in a BLOB or an XMLType object. The XML DB repository
management facilities for these content resources.

You have learned how to load XML through the protocol interfaces of the XML DB repaository. In this section, we will disct
such as applying version control to documents and creating links, and managing resources. We will also discuss the majc
that support this functionality:

m DBMS_XDB provides functions for resource and session management of the XML DB repository. It also provides fur
the hierarchical indexes.

= DBMS_XDB_VERSION provides functions for the version control of the resources.

Resource Management

In Oracle Database 10g, you can use the DBMS_XDB package to create and delete resources, folders, and links for the
also use this package to lock/unlock resources when reading or updating XML data:

DECLARE
res BOOLEAN;
xr REF XM.Type;
X XM.Type;
BEG N
FOR po_rec IN (SELECT rownumid, ref(p) xref FROM customer p
ORDER BY rowi d)

LooP
res: =DBMS_XDB. cr eat eResour ce(' / public/customer' || po_rec.id||
".xm ', po_rec.xref);
END LOOP,
END;

In this example, all of the customer records are read out of the customer table, and XML resource documents are create
directory of the XML DB repository using the DBMS_XDB.createResource () function.You can additionally create a
/public/important_customer folder in the XML DB repository as follows:

DECLARE
retb BOOLEAN;

BEG N
retb : = DBMS_XDB. createFolder('/public/inportant_customer');
COMW T;

END;

/

Then, you can create a resource such as README.txt to explain the content in this folder:

DECLARE
res BOOLEAN,
BEG N
res : =
DBMS_XDB. cr eateResource('/ public/i nmportant _custonmer/ READVE. t xt' ,
"This folder lists all of the US custoner who are inportant to
our business');
COW T;

Since you already have a set of customers listed in the /public directory, you can create a set of links instead of creating
the data:

EXEC DBMS _XDB.link('/public/custonerl. xm',
"/public/inmportant_customer/',' SteveJones.xm');

If you want to delete a resource, you can use the DBMS_XDB.DeleteResource() function, as follows:

DBMS_XDB. Del eteResource('/ public/inportant _customer/ St eveJones. xm ') ;
DBVS_XDB. Del eteResource ('/public/customerl.xm');

You can delete a resource with resources linking to it. However, after the original resource is removed, all the linked resoil
references. Each of them instead will hold a copy of the data.

Version Control

The DBMS_XDB_VERSION and DBMS_XDB PL/SQL packages implement Oracle XML DB versioning functions, which |
create and manage different versions of a Version-Controlled Resource (VCR) in Oracle XML DB.

When an XML DB resource is turned into a VCR, a flag is set to mark it as a VCR and the current resource becomes the
version is not physically stored in the database. In other words, there is no extra copy of this resource stored when it is v¢
Subsequent versions are stored in the same tables. Since the version resource is a system-generated resource, it does r
pathname. But you can still access the resource via the functions provided in the DBMS_XDB_VERSION package.

When the resource is checked out, no other user can make updates to it. When the resource is updated the first time, a (
is created. You can make several changes to the resource without checking it back in. You will always get the latest copy
even if you are a different user. When a resource is checked back in, the original version that was checked out is placed
version storage.

The versioning properties for the VCR are maintained within the XML DB repository. In this release, versioning only works
based resources. Thus XMLTypes based upon shredded XML documents or XMLType CLOBSs that have schemas attact
supported to use VCRs. However, we have found that as long as you do not create unique meta-data associated with a
such as an index, VCRs will work.

Note You cannot switch a VCR back to a non-VCR.

Oracle XML DB provides functions to keep track of all changes on Oracle XML DB VCRs. The following code demonstrat

DECLARE
resi d DBMB_XDB_VERSI ON. RESI D_TYPE;
BEG N
resid : = DBMS_XDB_VERSI ON. MakeVer sioned(' / publi c/inportant_cust omer/
St eveJones. xm ') ;
END;
/

You can get the resource ID of the VCR as follows:

SET AUTOPR NT ON

VAR OUT CLOB

DECLARE
resi d DBMB_XDB_VERSI ON. RESI D _TYPE;
res XML.Type;

BEG N
resid : = DBMS_XDB_VERSI ON. MakeVer si oned(' / publi c/inportant_customer/ St eveJones. xm ');
-- Obtain the resource
res := DBMS_XDB VERS| ON. Get Resour ceByResl d(resi d);
SELECT res. get ClobVval () I NTO : QJT FROM dual ;

END;

To update a VCR, you need to first check out the resource, make file updates, and then check them back in to the XML L
follows:

DECLARE

resi d DBMB_XDB_VERSI ON. RESI D_TYPE;
BEG N
DBMS_XDB VERSI ON CheckQut (' /publi c/i nportant custoner/Stevelones.xm ') ;
resid : =
DBM5_XDB_VERSI ON. Checkl n('/ public/inportant _customer/ St eveJones. xm"');
END;

Note that the resource is not updated until the new file is checked in. If you want to cancel the updates after the checkout
out” the resource as follows:

DECLARE
resi d DBMS_XDB VERSI ON. RESI D_TYPE;
BEA N
resid : =
DBMS_XDB_VERSI ON. UncheckQut (' / public/important _custoner/ SteveJones. xm ');
END;

[« rreviovs [exr |

[Team Lip [« Freviovs [nexrs]

Storing XML Documents in Relational Tables

Relational tables are normally designed without considering XML storage. However, in many cases these tables can
be used to store shredded XML documents and produce a useful XML representation by creating XMLType views
using Oracle Database 10g XML features or generating XML using the Oracle XDK.

Storing XML data in relational tables is useful if your application needs to avoid the limitations of the XMLType
storage, such as limited XML schema evolution and data replication. Relational storage is also widely used by
applications that require fine-grained access to the data in XML documents while not needing to preserve the
complete hierarchical structure of XML.

Oracle Database 10g provides extensive support for loading, exporting, and processing XML data into relational
tables. To load XML data, you can use the XML SQL Utility (XSU). XSU provides both Java and PL/SQL program
interfaces and command-line utilities. Built on XSU, the TransX Utility (XML Translation) further simplifies the
character set conversion during data loading, and the XSQL Servlet provides the HTTP interfaces. If the
functionality provided by these utilities is not sufficient for your application, you can always use their programmatic
APIs in conjunction with other XDK libraries to build your own custom solution.

XML SQL Utility

XSU provides Java-based APIs, command-line utilities, and PL/SQL packages that support loading XML data into
relational tables including tables with XMLType columns. We will discuss how you can use its functionality in the
following sections.

Canonical Mapping

The first thing you need to understand before using XSU is the canonical mapping used by XSU to map XML to
relational tables and render the results of SQL queries in XML. In this canonical mapping, the <ROWSET> element
is the root element of the XML document, and its child <ROW> elements map to rows of data in tables. The names
of the child elements for each <ROW> element map to the table column names or object names from which the
results are returned. The num attributes of the <ROW> elements are numbers that provide the order information.
The following is an XML Schema representation of this metadata structure:

<xs:schema xm ns:xs="http://ww.w3. or g/ 2001/ XM_Schema"
el ement For nDefaul t="qual i fi ed" attri buteFor nDef aul t ="unqualified">
<xs: el enent name=" ROAGET" >
<xs:conpl exType>
<Xs: sequence>
<xs: el ement name="ROW >
<xs: conpl exType>
<Xs:sequence>
<xs:any/ >
</ xs: sequence>
<xs:attribute name="num type="xs:string" use="optional"/>
</ xs:conpl exType>
</xs: el ement >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el emrent >
</xs: schena>

XSU provides ways to change the names of the <ROWSET> and <ROW> elements. For example, a
CUSTOMER_TBL table is defined as follows:

CREATE TABLE CQUSTOMER TBL (
NAME VARCHAR2(100),
ADDRESS VARCHAR2(200),
EMAI L VARCHAR2(200),
PHONE VARCHAR2(50),
DESCRI PTI ON VARCHAR2(4000)) ;

The XML document mapping to this table with the canonical mapping is shown as follows:

<ROWSET>
<ROW>
<NAME>St eve Jones</ NAME>
<EMAI L>St eve. Jones@xanpl e. conx/ EMAI L>
<ADDRESS>Soner oad, Sonecity, Redwood Shores, CA 94065, U.S. A</ ADDRESS>
<PHONE>6505723456</ PHONE>
<DESCRI PTI ON>Very | nportant US Cust oner </ DESCRI PTI ON>
</ ROV
</ ROABET>

Note By default, all table, column, and object names are uppercase; therefore, if you want to have mixed-case
XML documents successfully inserted you need to specify the ignoreCase options when using XSU.

In order to run the XSU command-line utility, you need to set the following Java packages in your Java
CLASSPATH:

m xmlparserv2.jar Oracle XML Parser for Java
m classes12.jar Oracle JDBC Drivers
m xsul?2.jar Oracle XML SQL Utility

Note You may need to add the orail8n.jar package to your Java CLASSPATH when handling XML with
different character sets. Or, you might get an oracle.xml.sql.Oracle XMLSQLException:
‘java.sql.SQLException: Non supported character set...’

XSU depends on the XML parser to build a DOM and depends on the JDBC drivers to connect to the Oracle
database and retrieve the table metadata. After the Java CLASSPATH is properly set, you can run the XSU
command-line utility with j ava QO acl eXM., which has two options, getXML for querying the database and putXML
for inserting data into the database.

Note Update and delete operations are not included in the XSU command-line utility but they are supported by
XSU through the Java and PL/SQL APIs.

For example, to insert the XML data in contactO1.xml, you can run the following command:

java O acleXM. put XML -conn "jdbc: oracl e:thin: @ocal host: 1521: or cl X"
-user "deno/demo" -fileName "custonerl xsu.xm" "custonr _thl"

The data is inserted into the CUSTOMER_TBL table inthe demo schema. To query the content in the table and
return the results in XML, you can run the following XSU command:

java O acleXM. get XM. -conn "jdbc: oracl e: thin: @ocal host: 1521: or cl X"
-user "deno/demp" "SELECT * FROM custoner _tbl"

The following XML document is returned:

<?xm version = '1.0'?>
<ROWBET>
<ROW nune"1">
<NAME>St eve Jones</ NAME>
<ADDRESS>Soner oad, Sonecity, Redwood Shores, CA 94065, U.S. A</ ADDRESS>
<EMAl L>St eve. Jones@xanpl e. conx/ EMAI L>
<PHONE>6505723456</ PHONE>
<DESCRI PTI ON>Very Inportant US Cust oner </ DESCRI PTI ON>
</ ROW
</ ROABET>

At this point, the XML document’s data has been successfully loaded into the database. However, input XML
documents are not always in the canonical format. How can you deal with these XML documents? The usual
approach is to use an XSLT stylesheet to transform the XML document into the canonical format. On the other
hand, you can create database object views mapping to the incoming XML format.

Object Views

If an XML document is not in the canonical format, you can create object views or XML Type views, to allow XSU to
map XML documents to database tables. In the following contact.xml XML document, the contact information is

stored as follows:

<Cont act _Li st >
<Cont act >
<User _i d>useri d</ User _id>
<Fi rst _Nane>St eve</Fi r st _Nanme>
<Last _Name>Jones</ Last Nane>
<Busi ness>
<Emai | >St eve. Jones@r acl e. conx/ Enai | >
<Phone>(650) 5769801</ Phone>
<Addr ess>
<Street 1>40pll</ Street 1>
<Street 2>500 Oracl e Parkway</ Street 2>
<d t y>Redwood Shores</ City>
<St at e>CA</ St at e>
<Zi pcode>94065</ Zi pcode>
<Countr y>USA</ Count r y>
</ Addr ess>
</ Busi ness>
</ Cont act >
</Contact _List>

The database schema is defined as follows:

CREATE TYPE address_typ AS OBIECT(
street 1 VARCHAR2(200),
street 2 VARCHAR2(200) ,
city VARCHAR2(100),
st ate VARCHAR2(20),
zi pcode VARCHAR2(20),
country VARCHAR2(20));

/

CREATE TABLE contact _t bl (
contactid VARCHAR2(15) PRI MARY KEY,
firstname VARCHAR2(100),
| astnane VARCHAR2(200),

m dname VARCHAR2(50),

busi ness_phone VARCHAR2(20),
home_phone VARCHAR2(10),

cel | _phone VARCHAR2(20),
business_addr address_typ,
business_emai | VARCHAR2(150));

Using the canonical mapping, the XML document cannot directly map to the table columns as the document
contains multiple levels; thus, toinsert this XML document, you need to create the following object view:

CREATE TYPE contactinfo_type AS OBJECT(
phone VARCHARZ2(20),
emai | VARCHAR2(150),
addr ess address_typ);
/
-- Create Object View
CREATE VI EW cont act _vi ew AS
SELECT contactid AS user_id, firstnane AS first_name, |astname AS
| ast _nane, mi dnane AS m d_nane,
contacti nfo_t ype(busi ness_phone, busi ness_emi |,
busi ness_addr) AS busi ness
FROM cont act _tbl ;

Then, you can run a similar command to load the XML file into CUSTOMER_VIEW:

java O acleXM put XML -conn "j dbc: oracl e: t hin: @ocal host: 1521: or cl X"
-user "denmo/denp" -fileName "contacts.xm " "contact_view'

In this example, the contact_view is used by the Oracle database to map the XML data into underlying tables.

However, in many cases these types of views are not updateable, when they include multiple table joins or object
type inheritance. You then must create an INSTEAD-OF TRIGGER on the views to handle data population for these
tables or objects.

Dividing XML Documents into Fragments

When storing XML documents, you sometimes do not want to map every XML element to relational table columns.
Instead, you might want to store some of the XML fragments in XML into CLOBs or XMLTypes. The following
example illustrates an approach using XSLT to create such XML fragments and insert those XML fragments into one
XMLType table column using XSU. In the example, the input XML document is shown as follows:

<Cont act _Li st >
<Contact >
<User _i d>j wang</ User _i d>
<Fi rst _Nane>Ji nyu</Fi r st _Nanme>
<Last _Name>Wang</ Last _Nane>
<Ti tl e>Seni or Product Manager</Titl e>
<Descri pti on>Jinyu nmanages t he <PRODUCT>Oracle XM. Devel oper's
Ki t </ PRODUCT> product. </ Descri pti on>
</ Cont act >
</Contact List>

The <Description> element contains mixed content, which we do not want to map to multiple table columns. A
contact_tbl table is defined as follows:

CREATE TABLE contact _t bl (
contactid VARCHAR2(15) PRI MARY KEY,
firstname VARCHAR2(100),
| astname VARCHAR2(200),
m dname VARCHAR2(50),
descri ption CLCB);

To map the <Description> element to the description column using XSU, you need to apply the following
setCDATA.xsl XSL stylesheet:
<xsl :styl esheet version="1.0"
xm ns: xsl ="http://ww.w3. or g/ 1999/ XSL/ Tr ansf or ni'>
<xsl : out put cdata-secti on-el ement s=" CODE"/ >

<I-- ldentity transformation -->
<xsl:tenplate match="*| @| conment ()| processi ng-i nstruction() |
text()">

<xsl: copy>
<xsl : appl y-t enpl ates sel ect ="*| @| comrent () | pr ocessi ng-
instruction()|text()"/>
</ xsl : copy>
</ xsl:tenpl ate>
<xsl :tenpl at e mat ch="Descri pti on">
<xsl: el ement nanme="Descri pti on">
<xsl : copy-of sel ect="@| conment ()| processi ng-instruction()"/>
<xsl :text di sabl e-out put-escapi ng="yes">& t;![CDATA[</ xsl : text >
<xsl : apply-tenpl ates select="*|./*/@|./*/ conmrent ()|./*/
processing-instruction()|text()"/>
<xsl :text di sabl e-out put-escapi ng="yes">]]> </xsl:text>
</ xsl : el ement >
</ xsl:tenpl ate>
</xsl :styl esheet >

This XSLT transformation will transform the input XML document and include all the child elements of
<Description> into one CDATA section so that each CDATA section can be stored to the description column by
XSU.

You can modify the XSL stylesheet for your application by specifying different match attributes for the following
template:

<xsl :tenplate match="Descripti on">...</ xsl:tenpl at e>

The XPath in the match attribute specifies the root element of the XML fragment to be stored.

Note Because XSLT requires a DOM to be built in memory, you may need to split the large documents before
the transformation.

TransX Utility

When populating the Oracle database with multilingual data or data translations, or when encoding, validation is
needed for each XML file. The traditional way is to switch the NLS_LANG setting as you switch loading files with
different encoding information. The NLS_LANG setting has to reflect the character set of the file loaded into the
database. This approach is error-prone because the encoding information is maintained separately from the data
itself. Setting the NLS_LANG environment variable is also tedious work.

With the TransX Utility provided in the XDK, the encoding information is kept along with the data in an XML
document of a predefined format so that multilingual data can be transferred without having to switch NLS_LANG
settings. TransX Utility maintains the correct character set throughout the process of translating the data and
successfully loading it into the database. We will not discuss the details of how to use the TransX Utility. However,
we include some samples with the chapter source code for you to try its functionality.

DBMS_XMLSTORE

DBMS_XMLSTORE is a supplied PL/SQL package that supports inserting XML data into database tables. This C-
based implementation provides better performance and system manageability than the Java-based
DBMS_XMLSave package. This package eliminates the overhead of starting up Oracle JVM as well as translating
Java class names for each method call. In addition, DBMS_XMLSTORE is built based on SAX parsing instead of
DOM parsing. Therefore, it scales well for large XML documents. You can see this in the following comparison using
the SH sample schema:

SQ > SELECT count(1) FROM sales;
COUNT(1)
1136945
SQ > CREATE TABLE test AS SELECT * FROM sal es;
Tabl e creat ed.
SQ > COREATE TABLE result AS SELECT * FROM sal es WHERE 0=1;
Tabl e creat ed.
SQ > SELECT count(1l) FROMtest;
COUNT(1)
1136945
SQ@ > SELECT count(1) FROMresult;
COUNT(1)

SQ> SET timng ON
SQ> DECLARE
2 gryCt x DBMS_XM_Query.ct xHandl e;
3 v_cl ob CLOB;
4 savCt x DBMS_XM_Save. ct xType;
5 v_rows NUMVBER
6 BEG N
7 -- Query out the content
8 gryCt x : = DBM5_XM.Query.newCont ext (' SELECT * FROM test');
9 v_cl ob : = DBM5_XM.Query.get Xm (qryCtx);

10 DBMS_QUTPUT. PUT_LI NE(' CLOB size = ' || DBVS_LOB. GETLENGTH(v_cl ob));
11 -- Save the content

12 savCt x : = DBM5_XM.Save. newCont ext (' RESULT');

13 v_rows := DBM5_XM.Save. insertxm (savCt x, v_cl ob);

14 DBVS_XM_Save. cl oseCont ext (savCt X) ;

15 DBMS_QUTPUT. PUT_LI NE(v_rows || ' rows inserted...");

16 END;

17 1/

DECLARE

*

ERROR at line 1:

ORA- 29532: Java call terninated by uncaught Java excepti on:
j ava. | ang. Qut C Menor yEr r or

ORA-06512: at "SYS. DBMS_XMLSAVE", |ine 114

ORA-06512: at line 13

El apsed: 00:11:57.05

In the preceding example, the sales table in the SH sample schema described in Chapter 8 is used to generate a

large XML document that, when parsed, is too large for the configured Oracle JVM memory. You can increase the
JAVA_POOL_SIZE to give more memory for processing; however, this may not be sufficient, especially when this

memory takes away from the database memory pool. In Oracle Database 10g, you can use DBMS_XMLSTORE to
resolve this issue as follows:

DECLARE

v_cl ob CLGCB;
savCt x DBM5_XMLSTORE. ct xType;
v_rows NUMBER

BEG N
-- Query out the content
SELECT doc INTO v_cl ob FROM t enp_cl ob;
-- Save the content
savCt x : = DBMB_XM.STCRE. newCont ext (' RESULT') ;
-- Set the update colums to inprove perfornmance
DBVS_XMLSTORE. Set Updat eCol umn (savCtx, 'PRCD_ID);
DBVS_XM_STORE. Set Updat eCol umn (savCtx, 'CUST_ID);
DBMS_XM_STORE. Set Updat eCol umm (savCtx, 'TIME_ID);
DBVS_XMLSTORE. Set Updat eCol umm (savCtx, 'CHANNEL ID);
DBMS_XM_STORE. Set Updat eCol um (savCtx, 'PROMO_ID);
DBVS_XMLSTORE. Set Updat eCol umn (savCtx, 'QUANTITY_SO.D);
DBVS_XM_STORE. Set Updat eCol umn (savCtx, 'AMOUNT_SOLD);
-- Insert the docunent
v_rows := DBMB_XM.STCRE. insertxn (savCt x, v_cl ob);
DBMS_XMLSTORE. cl oseCont ext (savCtx) ;
DBVS_QUTPUT. PUT_LI NE(v_rows || ' rows inserted...');

END;

It is recommended to use the DBMS_XMLSTORE SetUpdateColumn() function where applicable, as shown in the
preceding example, because this allows the DBMS_XMLSTORE program to know the list of columns that need to
be updated so as to use explicit SQL binding to the XML data. The previous example uses the following SQL
statement when preparing the data insertion:

| NSERT | NTO sal es(prod_id, cust_id, ..., amount_sold) val ues
(:1, :2, ..., :6);

This speeds up the data-insertion process by eliminating the overhead of parsing of the SQL statements in the
database.

[« rreviovs [ecr s |

[« Freviovs [nexrs]

Using External Tables

Introduced in Oracle9i, Oracle’s external table feature offers a solution to define a table in the database while leaving
the data stored outside of the database. Prior to Oracle Database 10g, external tables can be used only as read-only
tables. In other words, if you create an external table for XML files, these files can be queries and the table can be
joined with other tables. However, no DML operations, such as INSERT, UPDATE, and DELETE, are allowed on
the external tables.

Note In Oracle Database 10g, by using the ORACLE_DATAPUMP driver instead of the default
ORACLE_DRIVER, you can write to external tables.

In Oracle Database 10g, you can define VARCHAR2 and CLOB columns in external tables to store XML documents.
The following example shows how you can create an external table with a CLOB column to store the XML
documents. First, you need to create a DIRECTORY to read the data files:

CREATE DI RECTCRY data file_dir AS ' D\ xm book\ Exanpl es\ Chapt er9\ src\ xm"';

GRANT READ, WR TE ON DI RECTORY data _file_ dir TO deno;

Then, you can use this DIRECTORY to define an external table:

CREATE TABLE customer_xt (doc C.OB)
ORGANI ZATI ON EXTERNAL

(
TYPE CRACLE_LOADER
DEFAULT DI RECTORY data_file_dir
ACCESS PARAMETERS
(
FI ELDS (I obf n CHAR TERM NATED BY ', ")
COLUWN TRANSFORMS (doc FRCM | obfile (1obfn))
)
LOCATION (' xm .dat")
)

REJECT LIMT UNLIM TED;

Thexml.dat file follows:

cust oner 1. xml
cust oner 2. xnl

If you describe the table, you can see the following definition:

SQ@. > DESC customer _xt;
Narmre Nul | ? Type

Then, you can query the XML document as follows:

SELECT XM.Type(doc).extract ('/ Customer/EVAIL")
FROM cust onmer _xt ;

Though the query requires run-time XMLType creation and XPath evaluation, this approach is useful when
applications just need a few queries on the XML data and don’t want to upload the XML data into database. In
Oracle Database 10g, you cannot create external tables that contain pre-defined XMLType column types.

[« Freviovs [nexrs]

[« Freviovs [nexrs]

Schema Evolution

XML schemas evolve when there are new requirements for the XML data. Your ability to reflect these changes inthe
database is highly dependent on the storage.

If you use relational tables, you can change the table structure and update the XML views to reflect the new
mapping from XML to relational tables. If you use CLOB XMLTypes, your new XML data can be directly inserted
because this storage allows you to store XML conforming to different XML schemas. However, for XML
Schema—-based XML Types, evolution of their XML schemas is an expensive process because it requires updating of
the object-relational structure of the XMLTypes. In Oracle Database 10g, this type of evolution is limited to either
performing export/import of the data or using the CopyEvolution() function in the DBMS_XMLSCHEMA package.

[« rreviovs [ecr s |

[« Frevious|
Best Practices

If you need to accept XML data and store it in the database, the first thing that you should consider is whether your applic
in the database. As we discussed in Chapter 8, you need to evaluate the pros and cons of the XML storage options and ¢
and updating of the XML data. Additionally, you sometimes need to choose a particular XML storage model in order to su
evolving XML schemas.

After selecting the right XML storage model for your application, the following sections provide some guidelines of what yc
Database 10g.

Handling Document Type Definitions

Although DTDs are not used to define the storage structure for XMLTypes, Oracle XML DB resolves all the DTD definitiol
inserted XML document. This is performed during the inserting process of XMLType when all the incoming XML documer
including external or internal entities defined in DTDs, are resolved. This means that all the entities are replaced with their
references are lost.

If you would like to preserve these entity references, you have to store the XML in CLOBS, instead of CLOB XMLTypes.)
from these CLOBs whenever you need to resolve all the entities and use the XML content.

Creating XML Schema-based XMLTypes

You can create XML Schema—based XMLTypes using the XMLType construction functions or the XMLType.CreateXML|
these functions to create XML Schema-based XMLTypes, the XML documents have to contain the XML Schemal ocatic
not contain such attributes. How can you create an XML Schema—based XMLType without changing the original XML doc

As you have seen in Chapter 8, you can use the XMLType.CreateSchemaBased XML function and specify the URL of tt

I NSERT | NTO product (id, name, description)

VALUES(' xdk', 'XM. Devel oper's Kit',

XMLTYPE(' <DESCR PTI ON><KEYWDRD>xdk</ KEYWORD> i s a set of
standards-based utilities that hel ps to build
<KEYWCRD>XM_</ KEYWORD> applications. It contains XDK Java
Conponents, XDK C Conponents and XDK C++ Conponents.
</ DESCRI PTI ON>') . Creat eSchemaBasedXM_(' htt p: // xm ns. oracl e. cond
xm /content. xsd'));

The URL http://xmins.oracle.com/xml/content.xsd is the registered URL of the XML schema, and it will be used to sto

Specifying Namespaces

If a stored XML document has hamespaces, all of the XML queries on the document have to be hamespace-qualified bec
same as <Element> in XML. Both the XMLType.existsNode()and the XMLType.extract() functions allow the user to sp
as follows:

MEMBER FUNCTI CN exi stsNode(xpath in varchar2, nsmap in varchar?2)
RETURN numnber determ nistic
MEMBER FUNCTI CN extract (xpath I N varchar2, nsmap | N varchar?2)
RETURN XM.Type determ nistic

In this case, the XPath needs to use fully qualified XML names, which contain the element name and its namespace. For
with two namespace declarations into XMLTypes as follows:

CREATE TABLE tenp (doc XM.Type);
DECLARE
v_tenp XM.Type;
BEA N
v_tenp: = XM.Type. creat eXM.(' <foo xml ns="http://ww. exanpl e. cont
xm ns: xsd="htt p:// ww. w3c. or g/ 2001/ XM_Schenm" >
<foo_type xsd:type="date">03-11-1998</foo_type>
</ foo>");
I NSERT INTO tenp VALUES(v_tenp);

http://xmlns.oracle.com/xml/content.xsd

END;
To query the document, you can define the namespace and its prefix in the second parameter of the XMLType.extract()
prefix, as shown in the following SQL query:

SELECT a. doc.extract('/a:foo/a:foo_type',
"xmns:a="http://ww. exanpl e. coni'")
FROM tenp a;

The result is
<foo_type xm ns="http://ww. exanpl e.cont’ xm ns: xsd="http://ww w3c. or g/ 2001/ XM_Schema" xsd

Note If you do not use the namespace-qualified name in the XPath after providing namespaces, you will get an ORA-

If you have multiple namespaces, you can list them in the second parameter of the XML Type.existsNode()and the XML~
with white spaces, as shown in the following example:
SELECT a. doc. extract('/a:foo/a:lastupdate/ @:type',
"xm ns:a="http://ww.exanpl e.cont
xm ns: b="htt p: //ww.w3c.org/2001/ XM_.Schema"') AS result
FROM tenp a;
RESULT

[« rreviovs [exr |

[« Freviovs [nexrs]

Summary

The chapter discusses various XML storage options and the associated data loading strategies in Oracle Database
10g.Table 9-1 shows the relationships between the XML storage and the functionality offered in the XML data-
loading utilities. You can choose one of these utilities or use the SQL and PL/SQL interfaces to load XML
documents into the Oracle database.

Table 9-1: XML Data-Storage and Data-Loading Utilities

Utilities Functionality Relational XMLType Tables XMLType
Storage with Columns
XMLType
Views
SQL*Loader Command-line Limited Yes Yes
utility support
XML SQL Utility Command-line Yes Yes Yes
utility and
programmatic
interfaces in
Java and
PL/SQL
TransX Utility Command-line Yes Yes Yes
utility and
programmatic
interfaces in
Java
XSQL Serviet Command-line Yes Yes Yes
utility, program
interfaces in
Java and the
HTTP
interfaces

provided in the
built-in action

handlers
HTTP/WebDAV HTTP/WebDAV No Yes, but the table No
folders has to be the default
table created during
the XML schema
registration.
FTP Interfaces FTP interfaces No Yes, but the table No

has to be the default
table created during
the XML schema
registration.

[« Freviovs [nexrs]

[rrevious e]
Chapter 10: Generating and Retrieving XML

Overview

When data is incorporated along with its metadata in XML, it is more self-describing and portable and can be easily
shared, transformed, and transported across applications and platforms. This has been the driving force in making
XML a widely accepted format for encapsulating data and in a standard protocol for delivering services across
software components in business systems. As a result, the ways of managing XML data greatly influence the
architecture of modern databases.

Oracle Database 10g provides the built-in support for XML, which greatly simplifies the retrieval of XML content and
the conversion between relational datasets and XML-formatted data. This chapter will cover the techniques to
populate the data stored in object or relational tables into XML and to retrieve data from XML natively stored as
XMLTypes. The detailed description includes how you can create, transform, extract, and concatenate XMLTypes
into a preferred format.

The discussion starts by introducing the SQL/XML functions that allow you to create, access, and update XML with
SQL statements. This set of standards-based methods bridges the gap between SQL and XML operations, enabling
you to leverage the XML functionality when working on relational data and to utilize the relational SQL functions
when dealing with XML operations. Through the examples, you will learn how this seamless integration of SQL and
XML in the Oracle XML Database 10g(Oracle XML DB) provides great flexibility and functionality for solving
business problems.

In addition to the SQL/XML functions, the DBMS_XMLGEN PL/SQL package provides complementary functionality
to create XML. This chapter will show you typical examples and illustrate how and when to use this package.

After the discussion on how to create XML content from SQL data, XML processing techniques, such as how to
access, update, and transform XML content stored in XMLTypes, are included. We will explore how to create
XMLType Views and use the XML DB Repository to publish XML documents.

In the “Best Practices” section, we compare the database and mid-tier approaches, and describe solutions to some
common problems when generating and retrieving XML data from the Oracle database.

[« rreviovs [exr |

[rrevious Jrecrs

Generating XML from SQL Datawith SQL XML Functions

To generate XML from the SQL data stored in object or relational tables and process XML, Oracle XML DB provides supj

standard and a set of Oracle-provided SQL/XML functions.

The SQL/XML standard is part of the ISO/IEC (International Organization for Standardization/International Electrotechnic.
standard, which specifies the SQL standard for XML operations. Table 10-1 lists the SQL/XML functions and describes tt
Oracle Database 10g. Because currently the SQL/XML standard is still a working draft, the syntax of the SQL/XML functit

in future releases.

Table 10-1: ISO/IEC SQL/XML Functions
Function Name

XMLELEMENT()

XMLATTRIBUTES()

XMLFOREST()

XMLCONCAT()

XMLAGG()

Table 10-2 lists the Oracle-provided SQL/XML functions.

Table 10-2: Oracle-Provided SQL/XML Functions

Function

SYS_XMLGEN()

XMLSEQUENCE()

SYS_XMLAGG()

XMLCOLATTVAL()

UPDATEXML()

XMLTRANSFORM()
EXTRACTVALUE()

Description

Returns an XML element in an XMLType when ¢
element name, an optional list of XML attributes
(XMLATTRIBUTES()), and an optional list of val
content of the new element. XMLELEMENT() ce
other XML elements or XML fragments (XMLFO
children.

Used within XMLELEMENT() to specify attribute
element.

Returns an XML fragment in an XML Type when
named expressions for the XML elements. Each
specifies the name of an XML element and its ct

Returns an XML fragment in an XMLType by col
of XML elements/values.

Returns an XML fragment in an XML Type by agt
fragments, with the option of XML element sortir

Description

Generates an XML document with the <?XML?:
one scalar type, a user-defined object type, or a
XMLType.

Returns a collection of XMLTypes in an XMLSE!
which is a VARRAY of XMLType instances in th

Aggregates XML elements from one scalar type,
object type, or an instance of XMLType.

Generates a set of <column/>elements with the
attributes specifying the column names or the nz

Updates XML documents in XMLTypes using XF
expressions.

Applies XSL transformation on XML documents

Returns scalar content, such as numbers or stril
passed an XPath expression pointing to an XML
only a single text child.

Note The EXTRACTVALUE() is covered in a later section, when we discuss techniques on retrieving XML. The XML
is not covered because XMLType.transform() provides the same functionality.

If you are familiar with SQL, it should not be difficult to use these SQL/XML functions in the SQL statements. The followin

SELECT [XMLELEMENT | XMLATTRI BUTES | XMLFCREST| XML.CONCAT | XMLAG] ..]
FROM tabl e_name, [table (XM.SEQUENCE)]
WHERE search_condi ti ons

Using XMLELEMENT(), XMLATTRIBUTES(), and XMLFOREST() functions, you can create XML elements, the attributes
XML document fragments. The XML elements and XML document fragments then can be concatenated and aggregated
and XMLAGG(). The XMLSEQUENCE() function is different from the other functions. It creates a collection of XMLType i
be used to create temporary tables in the FROM clause of the SQL queries.

XMLELEMENT() and XMLATTRIBUTES()

XMLELEMENT() takes an element name and zero or more arguments that make up the element's content to create the >
instance of XMLType. You can also specify the collection of attributes for the element using XMLATTRIBUTES(). For exe
HR sample schema, you can create an XML element by using the following SQL command:

SQ> SELECT

2 XMLELEMENT(" Enpl oyee",
3 XMLATTR BUTES(enpl oyee_id AS "enpno",
4 job_id AS "job"),
5 XMLELEMENT(" Name" ,first _nane||' '|]|!|ast_nane),
6 "is hired on ',
7 hire_date
8)AS result
9 FROM enpl oyees
10 WHERE r ownun¥l;

In line 2, an Employee element is defined with two attributes, empnoandjob. The content of the attributes comes from tt
job_id column in the employees table. Then, a child element of Employee is created, called Name, with its content com
concatenation of the first_name and last_name columns. Additionally, you can add mixed content in the query; for exam
concatenated with the content of the hire_date column in lines 6 and 7, and the text is inserted after the <Name> elemer
produces the following XML element with attributes, along with a child element with mixed content:
<Enmpl oyee enpno="100" j ob="AD PRES">

<Nanme>St even Ki ng</ Name>i s hired on 17-JUN-87
</ Enpl oyee>

Note that if the element name or attribute name is not specified, the table column name will be used by default.

SYS_XMLGEN()

Different from XMLELEMENT(), SYS_XMLGEN() function allows creating the <?XML?> XML prolog and adding the XML
(Pls), such as XSLT stylesheet PI, to the created XML documents. For example, you can create an XML document with ¢
SQL command:

SELECT SYS XM.GEN XMLELEMENT(" Enpl oyee",
XMLATTRI BUTES(enpl oyee_id AS "enpno", job_id AS "job"),
XVMLELEMENT("Nane", first_nane||' '|]|l ast_nane),
'is hired on ',
hire_date))AS result
FROM EMPLOYEES
WHERE r ownum=1,;

Executing this query returns the following result:

<?xm version="1.0"?>
<ROW>
<Enpl oyee enpno="100" job="AD PRES'>
<Nanme>St even Ki ng</ Nanme>is hired on 17-JUN-87
</ Enpl oyee>
</ RO\

The SYS_XMLGEN() requires taking one scalar value, a user-defined object type or an XMLType instance as the input. Y
XMLFORMAT object to specify the XML formatting options (PIs, root tag, etc.) for the XML document:

SELECT SYS_XM.GEN XMLELEMENT(" Enpl oyee",
XMLATTRI BUTES(enpl oyee_i d AS "empno", job_id AS "job"),
XMLELEMENT(" Nanme" ,first_nane||' '|]|!ast_nane),

"is hired on ',
hire_date),
XM.FORVAT. cr eat ef or mat (' Enpl oyeeLi st', ' NO_SCHEMA' ,
nul |, " http://ww oracle.com', ' http://dburl"',
' <?xm -styl esheet href="htm Rend. xsl" type="text/xsl" ?>'))
FROM enpl oyees
WHERE r ownum <3;

The XML created contains an XSL stylesheet Pl and the default root element, the <ROW> element, is replaced by the <E

<?xm version="1.0"?>
<?xml - styl esheet href="htm Rend. xsl " type="text/xsl" ?>
<Enpl oyeeli st >
<Enmpl oyee enpno="100" j ob="AD PRES">

<Nane>Steven King</Name>is hired on 17- JUN 87</ Enpl oyee>
</ Enpl oyeeli st >

XMLFOREST()

The XMLFOREST() function produces an XML fragment that contains a set of XML elements. The following example add
to the <Employee> element:

SELECT
XMLELEMENT(" Epl oyee",

XMLATTR BUTES(enpl oyee_id AS "enpno", job_id AS "job"),
XMLELEMENT(" Name" ,first_nane||' '|]|]|ast_nane),
"is hired on ', hire_date,
XMLFOREST(EMAI L, PHONE_NUMBER)) AS resul t

FROM enpl oyees

WHERE r ownum=1,

This produces the following result:

<Enpl oyee enpno="100" j ob="AD PRES">
<Nanme>St even Ki ng</ Name>i s hired on 17-JUN-87
<EMAI L>SKI NG</ EMAI L>
<PHONE_NUVBER>515. 123. 4567</ PHONE_NUVBER>

</ Enpl oyee>

Note that some of the characters allowed in SQL identifiers are not valid for XML element names. When element or attrib
specified as quoted aliases such as using XMLELEMENT(“<element_name>") or using the AS clauses as we did for th
function, the fully escaped character mapping is used to map table column names to the XML element names, such as <
<PHONE_NUMBER> in the XMLFORESTY() are fully escaped names from the corresponding table column names. The fi
mapping will convert all of the invalid XML characters in the SQL names, such as the : character, to their Unicode represt
format starting with an x sign. For example, if the following object and table are created, where the object name contains

CREATE TYPE nydesc AS OBJECT ("ny:desc" VARCHAR 200))

/

CREATE TABLE nydesc_tbl of nydesc

/

I NSERT | NTO nydesc_t bl VALUES(' fully escaped character mapping');

After inserting the sample data, you can submit an SQL query as follows:
SELECT XMLELEMENT(" Test", XM.FOREST("ny:desc")) FROM nydesc_tbhl;

It gives you the XML element <my_x003A_desc> with the SQL name fully escaped:

<Test ><ny_x003A desc>ful ly escaped character mappi ng</ny_x003A desc>
</ Test>

Because: is not a legal character for the name of XML elements, it is escaped to be x003A, which is its Unicode represetr

If you need to keep the : character in the XML element/attribute names, you need to specify the name aliases for the XMl
to enable partially escaped character mapping, as shown in the following SQL query:

SELECT XM_LELEMENT(" Test", XM.FOREST("my:desc" AS "nmy:desc"))

FROM nydesc_tb

This allows you to create XML elements and attributes with namespaces as follows:

SELECT XMLELEMENT(" TEST",
XMLATTR BUTES(' http://xm ns. oracl e. com xm / Enpl oyee. xsd'
AS "xm ns: ny"), XM.FOREST("ny:desc" as "nmy:desc"))
FROM nydesc_t bl ;

The result is

<TEST xm ns: ny="http://xmns.oracl e.com xm / Enpl oyee. xsd" >
<ny: desc>ful |y escaped character mappi ng</ny: desc></ TEST>

The XML document defines a namespace prefix my for the <my:desc> element.

XMLSEQUENCE()

The function XMLSEQUENCE() returns a sequence of XMLTypes in XMLSEQUENCEType, which is a VARRAY of XML
following example shows the output of XMLSEQUENCE() when given a SQL cursor expression as the input:

SELECT XM_SEQUENCE(
QURSCR(
SELECT enpl oyee_id, first_name, |ast_name
FROM enpl oyees where rownum <3)) AS result
FROM dual ;

The result is

XM.SEQUENCETYPE(XM.TYPE(<ROW
<EMPLOYEE_| D>100</ EMPLOYEE_| D>
<FI RST_NAME>St even</ FI RST_NAMVE>
<LAST_NAVE>Ki ng</ LAST_NAME>

</ ROV

), XM.TYPE(<ROW
<EMPLOYEE_| D>101</ EMPLOYEE_| D>
<FI RST_NAME>Neena</ Fl RST_NAVE>
<LAST_NAME>Kochhar </ LAST_NAVE>

</ ROV

))

The query returns a collection of XMLType instances containing the <EMPLOYEE_ID>, <FIRST_NAME>, and <LAST_N
Since the <ROW> element is used within each row of XMLTypes, you need to make sure it is included in the XPath expre
the XML data returned as follows:
SELECT value(e).extract ('/ ROWEVMPLOYEE | D). getCl obVal ()
FROM TABLE(SELECT XM_SEQUENCEK(
QURSCR(
SELECT enpl oyee_id, first_name, |ast_nanme
FROM enpl oyees where rowium <3))
FROM dual) e;

The result is

<EMPLOYEE_| D>100</ EMPLOYEE_| D>
<EMPLOYEE_| D>101</ EMPLOYEE_I| D>

In the first line of the preceding SQL query, the XPath expression /ROW/EMPLOYEE_ID is used to extract the employee

XMLCONCAT()

XMLCONCAT() takes an XMLSEQUENCEType or a number of XMLType instances and returns an XML fragment with all
content concatenated. For example, the following SQL concatenates all XML elements within an XML sequence:
SELECT (XM.CONCAT(
XMLSEQUENCE(
QURSOR(SELECT * FRCQM enpl oyees WHERE rownunxk3))))
FROM dual ;

You can also use XMLCONCAT() with a set of XMLTypes, as shown in the following SQL query:

SELECT XM_CONCAT(XM_ELEMENT("Enai | ", emmil),

XMLELEMENT(" Nane", first_name||' '||last_name))
FROM enpl oyees
WHERE ROWNUMK3;

This function is useful when creating a single XML fragment from multiple XML Types.

XMLAGG()

The XMLAGG () function aggregates all the XML elements returned by the SQL query into an XML document fragment an
ORDER BY clause to order the XML values during the aggregation. The following SQL query returns all the employees ol
first_name:

SELECT XMLAGG(val ue(e)
CRDER BY EXTRACTVALUE(val ue(e),'/RON FIRST_NAME') DESC NULLS FI RST)
FROM TABLE(XMLSEQUENCE(CURSOR(SELECT first_nane, |ast_nane,salary
FROM enpl oyees))) e
WHERE EXTRACTVALUE(val ue(e), '/ ROW SALARY') BETWEEN 12000 AND 18000;

The difference between XMLCONCAT() and XMLAGG() is that XMLAGG () operates over the rows of data returned by th
XMLCONCAT() doesn’t work across rows.

SYS_XMLAGG()

SYS_XMLAGG() provides similar functionality to XMLAGG() except that SYS XMLAGG() adds an additional <ROWSET:
XML?> prolog to make sure the result is a well-formed XML document. Like SYS_XMLGEN(), SYS_XMLAGG() can use"
to specify the output formats. However, you need to make sure the input of SYS_XMLAGG() is a scalar type, an object ty
instance. Therefore, if multiple XMLType objects are needed for SYS_XMLAGG(), you need to use XMLCONCAT() to col
XMLType object instead of passing them directly to the SYS_XMLAGG():

SELECT SYS XMLAGE XM_LCONCAT(val ue(e)),
XM_FORVAT. cr eat eFor mat (' Enpl oyeeLi st'))
FROM TABLE(XMLSEQUENCE(CURSOR(SELECT first_name, |ast_nane,salary
FROM enpl oyees))) e
WHERE EXTRACTVALUE(val ue(e), '/ ROW SALARY') BETWEEN 12000 AND 18000;

XMLCOLATTVAL()

The XMLCOLATTVAL() function creates an XML fragment containing a set of <column> elements where the name attrit
the column names or the name aliases provided by SQL queries. For example, the following SQL query returns three <cc
theirname attributes coming from the hire_date and job_id column names and the dept name alias:

SELECT XMLELEMENT(" Enpl oyee",

XM.ATTRI BUTES(first_nane||' '|]|last_name AS "nane"),

XM.COLATTVAL(hire_date, job_id, department_id AS "dept")) AS "result”
FROM enpl oyees e

WHERE r ownum=1

The result is

<Enpl oyee nanme="Steven King">
<col um nane "H RE_DATE" >17- JUN- 87</ col uim>
<col um nane "JOB_| D' >AD_PRES</ col um>
<col um nane "dept" >90</ col um>

</ Enpl oyee>

This function is useful when table column names contain illegal XML characters.

UPDATEXML()

The UPDATEXML() function is a useful XML extension function that accepts an XMLType instance and a set of XPath ex
pairs to update the XPath-referred elements or attributes with the provided values. It returns a new transient XMLType ins
original XMLType instance with appropriate XML nodes updated.

The UPDATEXML () function offers multiple updates on the XML document and allows multiple namespace declarations:

SELECT UPDATEXML(col um_nane, 'XPathl', 'textl', .. XPathN , 'textN ,6'Namespacel Nanmespacel

The following example illustrates how to use namespaces in an update:

SQ > SELECT UPDATEXML(XMLTy pe(
2 ' <Enpl oyee xml ns: appl="www exanpl e. com ns1l"
xm ns: app2="www. exanpl e. coni ns2" >

3 <Nanme appl:type="CQustoner">Janet Jones</Name>

4 <Job app2:type="IT'>Manager </ Job>

5 <Sal ary app2:type="Hi dden">12000</ Sal ar y>

6 <Conmi ssi on app2:type="Hi dden">3400</Comni ssi on>
7 </ Enpl oyee>'),

8 '/ Enpl oyee/Nane/text()', 'Janet Lee',

9 ' /Enpl oyee/ Nane/ @ppl:type', 'Inportant Qustoner',
10 '/ Enpl oyee/Job/ @pp2: type', 'H dden',
11 "/ Enpl oyee// *[@pp2: t ype="Hi dden"]"' , nul |,

12 "xm ns: appl="www. exanple. conf nsl"
13 xm ns: app2="www. exanpl e. com ns2"') AS result
14 FROM dual ;

The result is

<Enmpl oyee xm ns: appl="www exanpl e. com nsl" xnl ns: app2="www. exanpl e. coni ns2" >
<Nane appl:type="Inportant Custoner">Janet Lee</ Name>
<Job/ >
<Sal ary/>
<Comni ssi on/ >
</ Enpl oyee>

The input XML document contains two namespaces, the xmiIns:appl="www.example.com/ns1” and xmlIns:app2="wv
However, you don't have to declare the namespaces for the UPDATEXML() unless the XML elements in the XPath expre
qualified by the namespaces. For example, you do not have to declare any namespace if you just need to update the /Err
node to be Janet Lee.

Note When updating the text content in the XML elements, you should use the text() function in XPath expressions. |
you want to update the /Employee/Name element, you need to specify the XPath as /Employee/Name and the
<Name>Janet Lee</Name>.

However, if XML elements in XPath need to be qualified by the namespaces, you have to declare the namespaces in UPI
line 12 and line 13, where namespaces are delimited by whitespaces.

The order of updates is determined by the order of the XPath expressions in the UPDATEXML() from left to right. Update:
because each successive update is based on the result of the previous ones. Therefore, after updating the /Employee/J:
Hidden, the next update, which sets the elements satisfied /Employee//*[@app2:type="Hidden”] to be NULL, updates
addition to the <Salary> and <Commission> elements.

To update the data stored in the tables, you can use UPDATEXML() in a SQL INSERT statement, as shown in this exam

UPDATE t enp SET doc=UPDATEXM.(doc,
"/a:fool/a:lastupdate/text()', SYSDATE,
"xm ns:a="http: // ww exanpl e. com'"');

The result is

<foo xm ns="http://ww. exanple. cont' xm ns: xsd="htt p://wwmv. w3c.or g/ 2001/ XM_Schema" >
<l ast updat e xsd:type="dat e">12- MAY- 03</ | ast updat e>
</foo>

Now we have discussed the built-in SQL/XML functions in Oracle Database 10g to create XML elements, attributes, XML
and update XML documents. With these functions, you can create XML easily using SQL statements. In the next section
XML functions that can also be used to create XML supporting more complex logic.

[« rreviovs [exr |

[« revious fnexr]
Generating XML from SQL Datawith DBM XMLGEN

DBMS_XMLGEN is a PL/SQL package supplied in Oracle Database 10g to generate XML in CLOBs or XMLTypes.
Itis a C-based implementation, which provides much better performance than the Java-based DBMS_XMLQUERY
package in the Oracle8i and Oracle9idatabase. While DBMS_XMLGEN provides similar functionality to the
SQL/XML functions, it is most useful when you need to

m Utilize the “fetching” interfaces in DBMS_XMLGEN for pagination
m Perform PL/SQL processing during the XML document generation

DBMS_XMLGEN is not limited to PL/SQL statements. You can also call its functions directly from any SQL
statement using DBMS_XMLGEN.GETXML() or DBMS_XMGEN.GETXMLTYPE(). In many cases, you will find that
this is easier than using the SQL/XML functions, as the input is simply a SQL statement. The following sections
providing some typical examples and describe how you can use this package.

Canonical Mapping

Unlike the SQL/XML functions, DBMS_XMLGEN uses a canonical mapping to map the SQL data to XML. The
format is exactly the same format used by the DBMS_XMLQUERY PL/SQL package or the XML SQL Utility (XSU)
Java packages. The following example generates an XML document containing a set of employee records:

SQ@> SET AUTOPRI NT ON
SQ@> SET LONG 100000
S@> VAR result CLOB
SQ.> DECLARE
gryQ x DBMS_XM_GEN. CTXHANDLE;
BEG N
gryax :=
DBMS_XM_GEN. NEWOONTEXT(' SELECT enployee_id AS "@d",
first_nane AS "FirstNanme",
last _name AS "Last Name",
emai |l AS "Email",
phone_nunber AS " Phone"
FROM enpl oyees
WHERE sal ary > 20000');
DBMS_XM_GEN. SETRONSETTAG(qryCt x, ' EMPLOYEES) ;
DBMS_XMLGEN. SETRONTAG(gr yCt x, ' EMPLOYEE) ;
sresult := DBMS_XM.GEN. GETXM_(gryQ x) ;
DBM5_XM_GEN CLOSECONTEXT(gryQ x) ;
END;

The result is

<?xm version="1.0"7?>
<EMPLOYEES>
<EMPLOYEE id = "100">
<Fi rst Name>St even</ Fi r st Narme>
<Last Nane>Ki ng</ Last Nane>
<Emai | >SKI NG/ Emai | >
<Phone>515. 123. 4567</ Phone>
</ EMPLOYEE>
</ EMPLOYEES>

Note In the example, the SQL*Plus command SET AUTOPRINT ON is used to automatically display the value
of the bind variables (the result variable in the CLOB data type).

The canonical mapping uses the <ROW> element to enclose each row of data returned by the SQL query. The
<ROW?=> elements are then included by the <ROWSET> element to create the XML document. In the example, the
<ROWSET>o0r <ROW> element names are changed to EMPLOYEES and EMPLOYEE respectively by calling the
DBMS_XMLGEN.SETROWSETTAG() and DBMS_XMLGEN.SETROWTAG() procedures.

Note By setting the parameters of DBMS_XMLGEN.SETROWSETTAG() and
DBMS_XMLGEN.SETROWTAG() to NULL, you can suppress the <ROWSET> and <ROW> elements.
However, suppressing the <ROWSET> element may result in no root element for the XML document and
the following error: ORA-19336: Missing XML root element.

By default, the child elements of <ROW> use the table column names as their element names. There is no PL/SQL
procedure provided in the DBMS_XMLGEN package to customize the names of these elements, but, you can
modify them via the AS clause in the SQL query. In the example, the LastNameis set as the aliasfor the
last_name column, and the employee_id column uses the alias @id. The difference between aliases with or
without@ in the aliases, is that the column with an alias with @ is mapped to an XML attribute instead of an XML
element.

Print Formatting

Using DBMS_XMLGEN, you can set the output formats using the following procedures:

PROCEDURE SETI NDENTATI ONW DTH(ct x | N CTXHANDLE, w dth I N NUMBER);
PROCEDURE SETPRETTYPRI NTI N ctx | N CTXHANDLE, pp | N BOOLEAN);

By default, the output is in “pretty” print format with all the whitespaces, indentations and linefeeds between the XML
elements, and you can set the number of whitespace characters used for indentation by calling
DBMS_XMLGEN.SETINDENTATIONWIDTH(). By setting the second parameter of
DBMS_XMLGEN.SETPRETTYPRINTING() to be FALSE, you can to get the XML documents generated in
“compact” format with all the whitespaces between the XML element tags stripped out, as shown in the following
example:

DECLARE
gryCtx DBMS_XMLCEN. CTXHANDLE;
BEG N
qryCtx : =
DBMS_XM_GEN. NEWCONTEXT (' SELECT enpl oyee_id AS "@d",
first_nane as "FirstNane",
| ast _name as "LastNanme",
emai |l as "Email",
phone_nunber as "Phone"
FROM enpl oyees
WHERE sal ary > 20000');
DBMS_XMLGEN. SETPRETTYPR NTI NG gryQ x, FALSE);
cresult = DBMS_XM.GEN. GETXM.(gryQ x) ;
DBMS_XM_GEN. CLOSECONTEXT(gqryCtx) ;
END;

The result is

<?xm version="1.0"7?>

<ROWSET><ROW-<EMPLOYEE_| D>100</ EMPLOYEE_| D>

<FI RST_NAME>St even</ FI RST_NAME><LAST_NAME>Ki ng</ LAST _NAVE>
<EMAI L>SKI NG</ EMAI L><PHONE_NUVBER>515. 123. 4567 </ PHONE_NUVBER>
<H RE_DATE>17-JUN 87</ H RE_DATE><JOB | D>AD _PRES</ J(B_| D>
<SALARY>24000</ SALARY><DEPARTMENT | D>90</ DEPARTVENT | D>

</ RONt</ RONBET>

Though this output is not the pretty format that you can easily read, an XML parser considers the data to be
equivalent.

Note The output format customization is the new feature for the DBMS_XMLGEN package in Oracle Database
10g.

Data Fetching

When a large amount of data is returned by the SQL query, it is not efficient to generate a single huge XML
document containing all the data. This will result in memory issues when performing DOM-based processing or
transmitting the document to another user. The data “fetching” feature in DBMS_XMLGEN allows you to generate a
set of small XML documents using the following procedures:

FUNCTI ON GETNUVROASPROCESSED(ct x | N CTXHANDLE) RETURN NUMBER,
PROCEDURE SETMAXROWS(ct x | N CTXHANDLE, naxRows | N NUMBER) ;

Here is an example using these functions in a PL/SQL FOR...LOOP:

SQ > SET SERVEROUTPUT ON SI ZE 1000000
SQ> DECLARE

gryCt x DBM5_XM.GEN CTXHANDLE;

res BOCLEAN,

result XM.Type;

i NUMBER :=0;

BEG N
-- Create the query context
gryCt x : = DBMS_XM_GEN. NEWCONTEXT(
" SELECT * FROM enpl oyees CRDER BY enpl oyee_id');

DBMB_XM_GEN. SETMAXROWNS(gqry Ct x, 10);

LoCP
result: = DBM5_XM.GEN GETXM.TYPE(qr yCt X) ;
EXI'T WHEN DBMS_XM_GEN. GETNUVROWSPRCCESSED(gqr yQt x) =0;
=i+l
-- Create XML DB Resources
res := DBMS_XDB. CREATERESOURCE(' /public/enp' |]i|]"'.xm"', result);
IF res = FALSE THEN

DBM5_CQUTPUT. PUT_LINE(' Error creating XM. DB resource');
ELSE
DBVMB_QUTPUT. PUT_LINE(' /public/emp ||i]]'.xm"||" is created);

END | F;

END LOCP;

COW T,

END;

The SQL query gets all the employees in order of their employee_id. By setting Max Rows to be 10, each XML
document contains no greater than ten records. The DBMS_XMLGEN.GETNUMROWSPROCESSED() function
keeps track of the number of rows that get decremented by 10 from the previous DBMS_XMLGEN.GETXML() calls.
Once the loops have completed, the DBMS_XMLGEN.GETNUMROWSPROCESSED() returns zero, and the
procedure exits.

During the creation of the outputs, DBMS_XMLGEN.GETXMLTYPE() is used to return the query result in XMLType.
This XMLType is then used by DBMS_XDB.CREATERESOURCE() to create a resource file in the XML DB
Repository. After the resource files are created, you can access the XML documents either through the
WebDAV/HTTP or the FTP interfaces. For example, when you type the following HTTP address in Internet Explorer:

http://1 ocal host: 8080/ public

A window pops up asking for login information. You can log in using any database username and its associated
password. However, because the resource is created as a private resource by default, you need to log in as HR
user to access the generated files from HR user, as shown in Figure 10-1.

http://localhost:8080/public

D Index of fpublic - Micresall Internet Explarer [
Bl [l Wew Fgees Jook MeD

) Back = CNE R Searth Faverites off Meda - B~

4] b s skt 0B oublc w ;j -'..:_ |

Index of /public

Hame Last modhed Caze

Fn, 25 Apr 2003 231301 GMT wn
Fri, 25 Ape
Fn, 23 Apr
Fn, 25 Apr
Fn, 25 Aprc
Fn, 23 Apr
Fn, &5 Apr
Fn, 25 Apr 200
Fr, 25 Apr 200
Fr, 25 Apr 200

Fr, 25 Apr 2003 231302 GMT 3611

] Dore S Lol inbranet

Figure 10-1: HTTP access of XDB (XML DB) repository

From these interfaces, you can easily download the files from the database server to other client systems.

Using REF Cursor

In addition to creating the query context from SQL queries, DBMS_XMLGEN.NEWCONTEXT() allows you to create
the query context based on REF cursors. This is done by specifying a SYS_REFCURSOR as the initialization
parameter, as shown in the following example:

SQ@ > SET AUTOPRI NT ON
SQ@> VAR result Q.O0B;
SQ> DECLARE
sal ary NUMVBER : =20000;
ref cur SYS_REFCURSOR
gryCtx DBWS_XM_GEN. CTXHANDLE;
BEG N
OPEN ref cur FOR
" SELECT * FROM enpl oyees WHERE sal ary> :1' USI NG sal ary;
gryCtx : = DBMS_XM.-GEN. NEWCONTEXT(r ef cur) ;
cresult = DBMS_XM.GEN. GETXM_(gr yCtx, DBMS_XM.CGEN. NONE) ;
DBMS_XM_CGEN. CLOSECONTEXT(qryCt x) ;
END;

This is useful when you need to create XML from a result set returned by another PL/SQL process.

Using Bind Variables

Whenever you use a SQL query repeatedly by simply updating several variables, you should think about using bind
variables, because they eliminate the need to reparse the SQL statement, thus saving processing time. In the
following example, we open a SYS_REFCURSORfor the department_id in the department table and use it to find
all the employees within each department. When creating the loop for each department_id,
DBMS_XMLGEN.SETBINDVALUE() is used to set the bind variable for the SQL query, and
DBMS_XMLGEN.CLEARBINDVALUE() is used to clear the bind variable data.

DECLARE
qryQa x DBMS_XM_GEN. CTXTYPE;
v_sgl VARCHAR2(100);
v_clob CLOB;
TYPE dept Type 1S RECORD (department _i d NUMBER(4));
v_deprec dept Type;
v_refcur SYS REFCURSOR,;
BEG N
gryQa x := DBMS_XM.CEN. NEWCONTEXT(
' SELECT * FROM enpl oyees WHERE departnment_id = :MD);
-- (pen Ref Cursor

OPEN v_refcur FOR
" SELECT department i d FRCM departments WHERE | ocation_id = 1700';
-- Loop each departnent
LooP
-- Fetch fromcursor variable.
FETCH v_refcur INTO v_deprec;
EXI T VWHEN v_r ef cur ¥0NOTFQUND,
DBMS XM_CGEN. SETBI NDVALUE(gryCtx, 'M D, v_deprec.departnent _id);
v_clob := DBVS_XMLGEN. GETXM.(qryCtx);
INSERT | NTO tenp VALUES(v_cl ob);
END LOCP;
DBMS_XM_.GEN CLOSECONTEXT(gryQ x) ;
EXCEPTI ON
VWHEN OTHERS THEN
DBMS_XM_CGEN. CLOSECONTEXT(qryCt x) ;
END;

Querying the V$SQL view in SYS user, we can see how many times the SQL query is parsed and executed:

SQ. > SELECT parse_call s, executi ons
FROM v$sql
VWHERE sql _t ext
LIKE ' SELECT * FROM enpl oyees WHERE departnent _id =% ;
PARSE_CALLS EXECUTI ONS

Note The V$SQL view is one of the V$ views created on the dynamic performance tables, in which every
parsed and stored SQL statement in the shared pool is presented as a row in the view. You need to run
GRANT SELECT ON v_%$sql TO HR before running the query on V$sql.

The result shows that the SQL query is executed 21 times but is only parsed once. This shows the value of using
bind variables in SQL.

Dealing with Special Characters

Some characters—such as ‘, <, and >—are special characters in XML documents and must be in escaped format,
also known as character entities format. For example, the escaped format for ‘ is ', the escaped format for >
is >, and the escaped format for < is &lIt;. By default, all special characters are escaped. For example, the
following SQL query contains a ‘ character:

SELECT DBM5_XM_GEN. GETXM_(
"SELECT '"Don"'''t escape nme!'' AS result FROM dual ')
FROM dual ;

The following XML document is generated with the ' escaped:

<?xm version="1.0"?>
<ROWBET>
<ROW
<RESULT>Doné't escape me! </ RESULT>
</ RO
</ ROABET>

To avoid the character escaping, you can call the DBMS_XMLGEN.SETCONVERTSPECIALCHARS() procedure
with FALSE, as in the following example:

DECLARE
gryQ x DBMS_XM_GEN. CTXHANDLE;
BEG N
gryax :=
DBMS_XM_GEN. NEWCONTEXT (
"SELECT ''Don''''t escape ne!'' as result FROM dual ');
DBMS_XM_GEN. SETCONVERTSPECI ALCHARS(gr yCt x, FALSE);
cresult = DBMS_XM.GEN. GETXM_(qryQ x) ;

DBMS_XM_GEN. CLOSECONTEXT(qryCtx) ;
END;

The generated XML document will have the following format:

<?xm version="1.0"7?>
<ROWSET>
<ROW>
<RESULT>Don't escape ne! </RESULT>
</ ROV
</ RONBET>

[« erevious [e |

[rrevious Jrecrs

Retrieving Using XML Type and SQL/XML Functions

So far, we have discussed various ways of generating XML from SQL data using the SQL/XML functions and the
DBMS_XMLGEN package. In Oracle Database 10g, if you already have XML documents natively stored as
XMLTypes, you can use the built-in XMLType member functions and the SQL/XML functions to retrieve and create
XML.Table 10-3 summarizes the XMLType member functions and their respective XML processing functionalities.

Table 10-3: XMLType Member Functions

Name

XMLType()
createXML()

createSchemaBasedXML()
createNonSchemaBase dXML()

existsNode()

extract()

isFragment()

getClobVal()
getNumberVal()
getStringVal()

transform()

toObject()

isSchemaBased()
getSchemaURL()
getRootElement()
getNamespace()

Functionality

Create XMLTypes from XML data stored in
VARCHARZ2, CLOB, or other XMLTypes.

Checks if the XML nodes or node sets specified
by XPath exist. It returns 1 if nodes or node sets
are found; otherwise, it returns O.

If the XPath string is NULL or the document is
empty, then a value of 0 is returned; otherwise, 1
is returned.

Extracts nodes or node sets based on the XPath
expression and returns an XMLType instance
containing the resulting node(s).

Checks if the XMLType is an XML document
fragment or a well-

formed document. It returns 1 if the XMLType is
an XML document fragment or a well-formed
document. Otherwise, it returns 0.

Determines if the XMLType instance corresponds
to a well-formed document or a fragment. Returns
1 or 0 indicating if

the XMLType instance contains a fragment or a
well-formed document.

Gets the CLOB, NUMBER, or String value in
VARCHARZ2, respectively, from the XMLType. You
can only use getNumberVal() when the content of
XMLType is numeric.

Transforms the XML content in XMLType with the
XSL stylesheet specified.

Casts the XML Type to other object types.

Checks the XML schema-related information of
XMLType.

If the XMLType is XML schema—based,
isSchemaBased()

returns TRUE. Then, getSchemaURL(),
getRootElement(), and getNamespace() can be
used to find out the registered XML schema URL,
the defined root element and the namespace of
the root element for the XMLType.

isSchemaValidate() Checks and updates the XML Schema validation

isSchemaValid() status of XMLType. If the XMLType is valid
schemaValidation() against the XML schema, then
setSchemaValidate() isSchemaValidate() returns 1. The

isSchemaValid() function returns the validation
status of the XMLType against the supplied XML
schema.To update the status of the XMLType,
schemaValidation() validates the XMLType
against an XML schema and updates the status to
validated after the validation.

If you validated the XMLTypes, you can update
the status through the setSchemaValidate()
procedure.

We will not discuss all details of the functions listed in Table 10-3, because they are well covered by the online
manual,Oracle XML Database Developer’'s Guide. Instead, in the following section, we will explore frequently used
functionality to help you solve some real problems.

Both the SQL/XML extension functions and XMLType member functions can be used, along with SQL commands
such as SELECT, UPDATE, and INSERT to perform XML operations. This section discusses how you can extract,
transform, and update the content when XML is stored natively in XMLTypes.

extract() and existsNode()

The XML Type.extract() object member function extracts nodes or node sets based on the passed XPath expression
and returns an XMLType instance containing the resulting node or nodes. You need to specify the table name alias
to qualify the object. Otherwise, you will get an error message as follows:

SQ@ > SELECT description.extract('//KEYWRD). i sFragnent()
FROM pr oduct ;
SELECT description.extract('//KEYWORD).isFragment () FROM product
*

ERROR at |ine 1:
ORA- 00904: "DESCR PTION'."EXTRACT": invalid identifier

In this example from Chapter 8, the product table contains a description XMLType column.

There are corresponding SQL/XML extension functions with the same name as the XMLType member functions,
including EXTRACT()and EXISTSNODE(). They are functionally the same except that they take an XMLType as
their first parameter and normally do not require the use of qualified names, as are needed by the XML Type member
functions. The following example illustrates using the EXTRACT() SQL/XML function:

SQ > SELECT EXTRACT(description,'//KEYWRD) FROM product;
EXTRACT(DESCRI PTI ON, ' / / KEYWORD')

<KEYWCRD>xdk </ KEYWORD>

<KEYWORD>XM_</ KEYWORD>

EXTRACTVALUE()

EXTRACTVALUE()does not belong to the XMLType object. It is an Oracle-provided SQL/XML function that returns
scalar content, such as numbers or strings, when passed an XPath expression. This function is quite convenient to
use because it automatically gets the value of the child text element of the specified XML node. However, make sure
the XPath points to an XML element with only a single child text element, otherwise, you will get the following error:
<DESCR PTION>Thi s Oracl e XML Parser supports <KEY>DOW/KEY> and

<KEY>SAX</ KEY> int erfaces. </ DESCRI PTI ON>
SQ.> SELECT EXTRACTVALUE(description,'//DESCRI PTIONtext()') FROM product;
SELECT EXTRACTVALUE(descri ption,'//DESCR PTIONVtext()') FROM product

*

ERROR at line 1:
ORA- 19025: EXTRACTVALUE returns val ue of only one node

The EXTRACTVALUE() function always returns a VARCHAR?2 by default for string values. Therefore, the node

value cannot be greater than 4K. If larger sizes are needed, you can use XMLType.extract() to get the document
and use the XMLType getClobVal() to get the content out in CLOB. When the XMLType storage is based on an
XML schema, at query compile time, EXTRACTVALUE() can automatically return the appropriate data type based
on the XML schema information, such as in a CLOB, DATE, or NUMBER.

[« Frevious Jiecr |

[« revious fnexr]
Generating XML Schemas

XML schemas and DTDs define the metadata for XML and can ensure both data and structural integrity. In Oracle Datab.
10g, the DBMS_XMLQUERY PL/SQL package and the XML SQL Utility (XSU) Java package support XML schema gene
from simple SQL statements. DBMS_XMLSCHEMA can generate XML schemas only from existing object types.

Note DBMS_XMLGEN does not support XML schema or DTD generation.

Taking the employees table as an example and using DBMS_XMLQUERY, we can generate the corresponding XML sct

SET AUTOPR NT ON
VAR result CLCB;

BEG N
cresult: =DBMS_XM.QUERY. GETXM.(' SELECT enpl oyee_id AS "@ d",
emai |, department _id
FROM enpl oyees WHERE r ownunel',
DBM5_XM_QUERY. SCHEMA) ;
END;

The generated XML schema is

<?xm version = "'1.0"'?>
<DOCUMENT xml ns: xsd="htt p: // wwmv. W3. or g/ 2001/ XM_Schema" >
<xsd:schema xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schema" >
<xsd: el ement nanme=" ROABET" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement name="ROW mi nCccurs="0" nmaxCOccur s="unbounded" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: element nanme="EMAI L" nill abl e="true" m nCccurs="0">
<xsd: si npl eType>
<xsd:restriction base="xsd: string">
<xsd: maxLengt h val ue="25"/>
</ xsd:restriction>
</xsd: si npl eType>
</ xsd: el ement >
<xsd: el ement name="DEPARTMENT_I D" type="xsd:integer" nillable="true" m nOccurs=
</ xsd: sequence>
<xsd: attribute name="nuni' type="xsd:integer"/>
<xsd: attribute name="id" type="xsd:integer"/>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
</xsd: el enent>
</ xsd: schema>
<ROASET xm ns:xsi="http://ww w3.org/2001/ XM.Schema-i nstance"
Xsi : noNanmespaceSchenmaLocat i on="#/ DOCUVENT/ xsd: schema[not (@ ar get Nanespace)] " >
<ROW nume"1" id="100">
<EMAI L>SKI NG</ EMAI L>
<DEPARTMENT _| D>90</ DEPARTMENT _| D>
</ ROW
</ RONSET>
</ DOCUVENT>

The generated XML schema maps database data types to the corresponding XML schema data types. In this case,
VARCHAR?2 maps to xsd:string and NUMBER maps to xsd:integer. The generated schema also includes the length
constraints for the VARHAR2 columns using the xsd: maxLength for xsd:string. For table columns that can be NULL, tf
attributexsd:nillable="true” is added. The generated XML documents specify the schema location using the special syn
Oracle XML DB, which uses # to specify the current document followed by the XPath to the XML schema definition. Orac
schema processors are extended to validate the XML document using this “inline” XML schema location, though this is nc

defined in the W3C XML Schema Recommendation.

To generate the DTDs, you can use DBMS_XMLQUERY.DTD as the second parameter for the DBMS_XMLQUERY.GET
function, as shown in the following example:

SET AUTOPR NT ON
VAR result CLCB;
BEG N
‘resul t: =DBMS_XM_QUERY. GETXM_(' SELECT * FRQM enpl oyees
VWHERE r ownun¥l',
DBMS_XM_LQUERY. DID) ;
END;

The XSU Java package provides similar interfaces to those provided by the DBMS_XMLQUERY package.

Using DBMS_XMLSCHEMA, you can create the following object types and use them as parameters as in the following
example:

CREATE OR REPLACE TYPE EMP_T AS OBJECT
("@d" NUMBER(6),
email VARCHAR2(25),
department _id NUMBER(4));

SELECT DBM5_XM.SCHEMA. GENERATESCHEMA(' HR , 'EMP_T') FROM dual ;

If there is any related object, you must create the corresponding object. Otherwise, you will get the following error:
PLS- 00382: expression is of wong type

Though using the DBMS_XMLSCHEMA package is complicated, it allows great flexibility in creating XML hierarchical strt
The advantage of using DBMS_XMLQUERY is that you need to pass only in SQL queries. However, it generates limited -
of XML schemas.

Note If the objects belong to different user schemas, using DBMS_XMLQUERY.GETXML() or
DBMS_XMLSCHEMA.GENERATESCHEMAS(), instead of DBMS_XMLSCHEMA.GENERATESCHEMA(), will
multiple XML schemas.

[« rreviovs [nexr s |

[« revious fnexr]
Creating XML Type Views

An XMLType view is an efficient way of encapsulating existing relational or object-relational data in XML. In Oracle
Database 10g, you can use any SQL or PL/SQL functions that generate XMLTypes to create an XMLType view.
There are two different ways of creating XML Type views—as columns or rows.

You can create a view where the XMLType is a single column, as shown in the following example using a SQL/XML
statement:
CREATE OR REPLACE VI EW enpl oyee_vw AS
SELECT XM_ELEMENT(" Enpl oyee",
XMLATTRIBUTES(first_nane||' '|]|last_name AS "nane"),
XMLFOREST(sal ary, phone_nunber))AS result,enployee_id
FROM enpl oyees;

When you run describe employee_vw, you will see the following definition for the view:
SQ.> descri be enpl oyee_vw,

Name Nul | ? Type
RESULT SYS. XMLTYPE
EMPLOYEE_| D NOT NULL NUMBER(6)

The other way is to create an object XML Type view, where each row object is an XMLType instance and is
associated with a unigue OBJECT ID (OID). The resulting SYS_NC_ROWINFO$ is a virtual column referring to the
XMLType instance in the XMLType object view or table:

CREATE OR REPLACE VI EW enpl oyee_vw CF XM.TYPE WTH OBJECT ID
(EXTRACT(SYS_NC_ROW NFC8$, ' / Enpl oyee/ @npno'). get Nunber Val ())
AS
SELECT XM_ELEMENT(" Enpl oyee",
XM.ATTRI BUTES(e. enpl oyee_id AS "enpno"),
XM_.FOREST(e.first_nane, e.last_nanme, e.job_id))AS result
FROM enpl oyees e;

When creating XMLType object views, you need to specify the OBJECT ID via the OF XMLType WITH OBJECT ID
syntax and assign the OBJECT ID by extracting a scalar value out of the XMLType. You can use the DEFAULT
keyword to ask the database to create a default OBJECT ID. However, this is not recommended, because it will
generate a 16-byte ID that is difficult to use when referring to the data in the view.

After you have created either view, you can query it as you would a relational table with XMLType columns or an
XMLType object table:

SELECT * FROM enpl oyee_vw WHERE ROWNUMK2;

To optimize the queries on the XMLType object views to be able to use “query rewrite”, you can associate an XML
schema with it through the following SQL statement:

CREATE OR REPLACE VI EW enpl oyee_vw CF XM.TYPE

XM.SCHEMA "http://xm ns. oracle. com xm / enpl oyee. xsd" ELEMENT "Enpl oyee"
WTH CBJECT | D

(EXTRACT(SYS_NC_ROW NFO$, ' / Enpl oyee/ @npno'). get Nunber Val ())

AS

SELECT XM_ELEMENT(" Enpl oyee",

XM_ATTRI BUTES(e. enpl oyee_id AS "enpno"),

XM.FOREST(e. first_nane, e.last_nane, e.job_id))AS result

FROM empl oyees e;

The advantage of using XMLType views is that you can have several views representing differing XML hierarchies
with single data storage.

[« Freviovs [nexrs]

[« revious fnexr]
Processing XML

We have covered the basic techniques of generating XML from SQL data in object-relational tables and XMLTypes.
In this section, we discuss how you can process the XML documents before passing them to applications.
Specifically, we discuss how to convert XML fragments into XML documents and how to use DBMS_XMLDOM to
create a DOM during XML document generation. PL/SQL transformations are discussed in Chapter 26.

Dealing with XML Fragments

XMLType operations may result in creating XMLTypes containing XML fragments instead of XML documents. Since
you cannot insert an XML fragment into XMLType columns or tables, you need to use the following function to check
whether or not the current XML type is an XML fragment:

SQ@> INSERT I NTO tenp_enp
SELECT XM_CONCAT(XMLELEMENT("Enai | ", emai |),
XMLELEMENT("Narme", first_nane||' '||last_nane))
FROM enpl oyees
WHERE ROWANUM3;
insert into tenp_enp
*

ERROR at line 1:
ORA-19010: Cannot insert XM fragnents

The following query checks if the result of the SQL/XML function is an XML document fragment:

SQ > SELECT XM_CONCAT(XMLELEMENT("Emai |l ", emai |),
2 XMLELEMENT(" Nare", first_name||' '|]|last_nane)).isFragnment ()
3 FROM enpl oyees
4 \WHERE ROWNUM<2;

XM_CONCAT(XMLELEMENT(" EMAI L" , EMAI L),
XM_ELEMVENT(" NAVE", FI RST_NAME| | ' ' | | LAST_NAME)

The result of the preceding query shows that the XMLType is an XML fragment. Normally, such XML fragments do
not meet the single root element requirement for XML documents. Therefore, you need to create a well-formed XML
document using XMLELEMENT() before instering it into XMLTypes as follows:

| NSERT | NTO t enp_enp
SELECT XM_ELEMENT" RESULT",
XM_CONCAT(XMLELEMENT (" Enai | ", ermai |),
XMLELEMENT(" Nare", first_name||' '||last_nane)))
FROM enpl oyees
WHERE ROWNUMK2;

DOM Editing

As discussed in Chapter 2, the Document Object Model (DOM) is a set of standard APls dealing with XML as a tree-
type memory object. You can use the DOM APIs to delete, insert, and update XML elements, nodes, and attributes.
In Oracle Database 10g, you can use the DBMS_XMLDOM package to perform these functions. From Chapter 2,
you should be already familiar with the DOM operations, so the following examples show how these are performed
from PL/SQL.

Operating on XMLType DOM

In Oracle Database 10g, you do not need to reparse an XML document if it is stored as an XMLType. There are two
functions in the DBMS_XMLDOM package that directly support XMLType DOM operations:

FUNCTI ON NEWDAOVDOCUMENT(X doc | N SYS. XM.Type) RETURN DOVDOCUMENT;
FUNCTI ON GETXM.TYPE(doc I N DAQVDOCUMENT) RETURN SYS. XMLType;

As a result, you can call DOM functions by creating an XMLType, using its construction function, and then passing it

to DBMS_XMLDOM.NEWDOMDOCUMENT() as an input. After DOM processing, you can get the result in an
XMLType by using the DBMS_XMLDOM.GETXMLTYPE() function. Here is an example of an update operation:

CREATE OR REPLACE PROCEDURE updat eXM.El enent (p_doc | N QUT XMLTYPE,
p_enane | N VARCHAR?2,
p_content | N VARCHAR2) AS
v_item NUMBER,
v_doc DBMS_XM_DOM DOVDOCUMENT;
v_ndoc DBMS_XM.DOM DOWNCDE;
v_nlist DBM5_XM.DOV DQVNODELI ST;
v_node DBMS_XM.DOM DOWNCDE;
v_el em DBMS_XM.DOM DOMEL EMENT;
v_nel em DBM5_XM.DOM DOVNCEE;
v_text DBMS_XM.DOM DOMIEXT;
v_nt ext DBM5_XM_DOM DOMNCEE;
BEG N
-- CGeate DOM (bj ect
v_doc : = DBM5_XM.DOM NEWDOVDOCUMENT(p_doc);
v_ndoc :=DBM5_XM.DOM MAKENCDE(DBMS XM_DOM GETDOCUVENTELEMENT(v_doc));
-- Select the DOM Nodes
v_nlist:= DBMS_XM.DOM GETELEMENTSBYTAGNAME(v_doc, p_enane);
| F DBMS_XMLDOM GETLENGTH(v_nlist) > 0 THEN
DBVS_QUTPUT. PUT_LI NE(' Update the: '||p_enane||"' el enents.');
FCR v_item I N 0..DBMS_XM.DOM GETLENGTH(v_nlist) LOCP
v_node := DBMS_XM.DOM ITEMvVv_nlist, v_item;
v_ntext : = DBMS_XM.DOM GETFI RSTCHI LD(v_node) ;
DBMS_OUTPUT. PUT_LI NE(DBMS_XM_DOM GETNCDEVALUE(v_nt ext)) ;
DBMS_XM_DOM SETNODEVALUE(Vv_ntext, p_content);
END LQOOP;
ELSE
DBMS_OUTPUT. PUT_LINE(' No ' || p_enane||' elenent in the current
docurent.');
END | F;
-- Free resources
DBM5_XM.DOM FREEDQOCUMENT(v_doc) ;
EXCEPTI ON
WHEN OTHERS THEN
DBM5_OUTPUT. PUT_LINE(' Exceptions during the process');
END;

In the example, the DBMS_XMLDOM.DOMDOCUMENT() creates the DOMDOCUMENT from the XMLType input
p_doc. Then, a set of DOM operations is performed, which include using the
DBMS_XMLDOM.GETELEMENTBYTAGNAME() function to get the XML elements with name p_ename for the
updates and iterating each XML element item to update the content using the
DBMS_XMLDOM.SETNODEVALUE().

Next, the created procedure can be used to update the telephone number for an employee with EMPLOYEE_ID of
199. The original document contains the following:
<ROWBET>
<ROW
<EMPLOYEE | D>199</ EMPLOYEE_| D>

<PHONE_NUMBER>650. 507. 9844</ PHONE_NUVBER>
</ RON>

Then, run the update XMLEIement() function:

DECLARE
v_doc XM.Type;
BEA N
-- Oeate Sanple XM. Documnent
SELECT XMLTYPE(DBMS_XM_GEN. GETXM_(' SELECT * FROM enpl oyees

WHERE enpl oyee_i d=199'))
INTO v_doc FROM dual ;
-- Update the H emnent
updat eXM_El enent (v_doc, ' PHONE_NUMBER' , ' 650. 506. 9181");
-- Print out the content
SELECT v_doc. get Cl obVal () INTO : result FROM dual ;
END;

The result is the XML document containing the updated phone number:

<ROWSET>
<ROW
<EMPLOYEE_| D>199</ EMPLOYEE_| D>

<PHONE_NUMBER>650. 506. 9181</ PHONE_NUVBER>

</ RON
</ ROWNBET>

If multiple employees were selected, all of them would be updated. You can try the sample yourself by updating the
WHERE clause in the SQL statement.

Appending XML Document Fragments

If you have two XML documents and want to merge them together, you can use the following functions, which use
DBMS_XMLDOM:

FUNCTI ON i nmport Node(doc DOVDOCUMENT, i nportednode DOVNCDE,
deep BOOLEAN RETURN DOMNOLE;
FUNCTI ON appendChi | d(n DOVNODE, newcChild | N DOMWODE) RETURN DQVNODE;

For example, if you create one XML document containing the department information and want to merge this
document with one containing the employees of this department, you could use the following code:

SQ@ > SET AUTOPRI NT ON
SQ@> VAR RESULT CLOB
SQ > DECLARE
v_tdoc XM.Type;
v_t subdoc XM.Type;
v_result CLCB;
v_doc DBMS_XM.DOM DOVDOCUMENT;
v_subdoc DBM5_XM_DCOM DQVDOCUMENT;
v_doc_el em DBMS_XM.DOM DOVELEMENT;
v_subdoc_el em DBMS_XM.DOM DOVEL EMENT;
v_node DBMS_XM.DOM DOWNCDE;
v_i npnode DBMS_XM.DOM DOMNCDE;
BEG N
-- Oeate the Main XM docunent
SELECT XM_Type(DBMS_XM.GEN. GETXM_(' SELECT * FROM depart ment s
WHERE department _id =20"))
I NTO v_t doc FROM dual ;
-- Oreate the Sub XML docunent
SELECT XM_Type(DBMS_XM_GEN. GETXM_(' SELECT * FROM enpl oyees
WHERE departnent _id = 20'))
I NTO v_t subdoc from dual ;

-- Merge the documents
v_doc : = DBM5_XM.DOM NEWDOMDOCUMENT(Vv_t doc) ;
v_subdoc : =DBMS_XM.DOM NEWDOVDOCUMENT(V_t subdoc) ;
v_doc_elem := DBMS_XM.DOM GETDOCUMENTELEMENT(v_doc) ;
v_subdoc_el em : = DBMS_ XM.DOM GETDOCUMENTELEMENT(v_subdoc);
v_i npnode : = DBMS_XMLDOM | MPORTNODE(v_doc,
DBMS_XM.DOM MAKENODE(v_subdoc_el em), true) ;

v_node := DBMS_XM.DOM APPENDCH LD(

DBM5_XM.DOM MAKENCDE(v_doc_el em, v_inpnode);

--v_node : = DBM5_XM.DOM APPENDCHI LD(
-- DBVS_XM_DOM MAKENODE(v_doc_el em),
- - DBMS_XM_DOM MAKENODE(v_subdoc_elem);
DBMS_LOB. CREATETEMPORARY(Vv_resul t,true, DBM5_LOB. SESSI ON) ;
DBMS_XM_.DOM WRI TETOCLOB(v_doc,v_resul t);
SELECT v_result INTO :result FROM dual;
DBMS_LOB. FREETEMPORARY(V_result);
END;

This example uses the DBMS_XMLDOM.IMPORTNODE() and DBMS_XMLDOM.APPENDCHILD() functions to
create the merged document. This is the suggested and standards-compliant way to add content from one
document to another viathe DOM. We explore the DBMS_XMLDOM package further in Chapter 26.

[« Frevious Jinecr |

[« Frevious|
Best Practices

Before you start to explore the technical details of your XML application implementation, it is important to ask
yourself the following questions:

= What information do | need to deliver?

= What is the format for the XML document?

m Are there any limits to the size of the XML document?

m Which tier can be used to create, process, and deliver the XML content?
The answers to these questions will help you to make your design decisions.

First, for point-to-point communications, where individual pairs of applications exchange data through their private
tunnels, encapsulating the data in XML is not a good choice because it introduces processing overhead from the
metadata. Without this need to share data in public, the proprietary data formats, such as the binary format, are
much more efficient and provide better security for the data transmission over the network.

Second, when using XML, always make sure to pick the right data format. Also, avoid including presentation data in
XML. Itis a good practice to keep presentation data in the XSLT stylesheets.

Even though many people perceive the capability to create highly descriptive tag names as an advantage of XML,
you should not forget that, in most cases, XML documents are used for application processing and the size of the
XML can greatly impact on the scalability of XML applications. XML documents need to be designed for efficient
application processing. For example, the human-readable element name Employee_Salary could be replaced by
EmpSal, and certain empty XML elements that describe properties or context for the data can be replaced by XML
attributes to simplify the data access and reduce document size.

As discussed earlier, whitespaces are used to format an XML document as human-readable. This creates additional
overhead for most XML processing. Removing whitespaces in XML documents sometimes can reduce the DOM
object size 50 to 70 percent!

Third, in addition to creating a compact data format, you should also avoid generating large XML documents from
SQL queries. Just as databases utilize partitions to deal with large tables, you should also split large XML
documents containing repeating subtrees or row sets into sets of smaller XML documents. Otherwise, your
application may end up running out of memory or not being able to scale when deployed in production systems with
high volumes of data and transactions.

Fourth, you should avoid overloading any application tier with XML processing. For example, sometimes XSL
transformations are required before delivering the XML data. Depending on the nature of the XSL stylesheets and
the size of the input documents, you can perform the XSL transformation in database tier, in mid-tier application
servers or on the client side.

If the XSL process transforms large amounts of data from the database, it is a good practice to run them in
database. This is because you can easily leverage the high-performance data management in database, such as
the lazy DOM support in the Oracle XML DB. Additionally, transforming in database can facilitate sharing the
transformed results between database applications.

If the XML documents are small but intensive processing is required, such as processing SOAP or other types of
XML messages, the middle tier provides the advantage of scalability by offloading the database server and hence
improving the overall system performance.

To further offload the servers, some XML processing can even be performed on the client side. Now, through their
support for Java, PDAs and cell phones also provide XML support.

Caching XML is another way to save processing resources in servers. The Oracle database will cache the query
results in its the shared pool. However, you can also simply store the result XML documents in CLOB tables for
further use.

Fifth, if certain XML SQL queries are frequently used, XML views can be used to eliminate retyping and parsing the
SQL statements, thus saving time.

Finally, though the built-in XML functions give you broad functionality in generating XML, you could implement

customized solutions with Oracle XML Developer's Kit (Oracle XDK) APIs in C, C++, and Java when the built-in XML
functionality cannot meet your business requirements. For example, since the SAX parsing is not available in the
SQL/XML functions or any of the PL/SQL packages, you can create mid-tier applications using SAX APls from the
Oracle XDK to generate large XML documents as follows:

Connecti on conn;
String usernane "sh";
String password "sh";
String thinConn = "jdbc:oracle:thin:@ocal host:1521: ORCLX";
try
{
/1 Open a File and JDBC Connecti on
CQut put Stream out = new Fi | eQutput Stream("out.xm");
Dri ver Manager . regi sterDri ver (new oracle.jdbc.driver.QacleDriver());
conn= Dri verManager. get Connecti on(t hi nConn, user nane, passwor d) ;
/1l Create SAX Print Driver
XMLSAXSeri ali zer sanpl e = new XM_LSAXSeri ali zer (out);
/1 Wsing the Oracl eXM_Query with SAX Qut put
Oracl eXMQuery gry = new Oracl eXM.Query(conn,"select * fromsal es");
gry.get XMLSAX(sanpl e) ;
sanpl e. fl ush();

cat ch(Exception ex)
{

ex. printStackTrace();

}

TheXMLSAXSerializer is a SAX Content Handler in Oracle XDK that provides SAX output serialization with many
options to customize the output such as specifying “pretty” or “compact” formats, setting the encoding attribute in the
<?XML?> prolog and so on. In this example, the XMLSAXSerializer is registered to the
OracleXMLQuery.getXMLSAX() interface to receive SAX events for the XML created by the XML SQL Utility. It
then serializes the output out.xml.

[« rreviovs [ecr s |

[« Freviovs [nexrs]

Summary

This chapter illustrated the techniques to produce XML from various data sources in Oracle Database 10g. We
showed how to create XMLTypes from SQL data and how to extract, transform, aggregate, and concatenate XML
data within SQL commands or PL/SQL programs.

This functionality, natively provided in Oracle Database 10g, permits a single source of data to be presented in
multiple XML formats appropriate to individual clients or applications. This opens up information-sharing possibilities,
resulting in better web publishing and data exchange across applications.

[« rreviovs [ecr o |

[rrevious e]
Chapter 11: Searching XML Data

Overview

XML is a widely accepted standard for enterprise applications to exchange business data and publish data over the
Internet. By storing XML data in Oracle Database 10g, you can create SQL indexes and enable users to efficiently
search XML data. Oracle Database 10g provides two types of search on XML: the XPath-based search provided
along with the XMLType functions, and the full text search using the Oracle database component, Oracle Text.

The XPath-based searches are queries that are based on XPath expressions, which narrow down the scope of the
search through the XML hierarchical structure. Using XPath expressions, you can specify XML namespaces and
leverage a wide range of datatype comparisons, such as string, number, and date comparisons. Though Oracle Text
currently does not support XML namespaces and provides limited XPath and datatype support, you may need to rely
on it for its scalable full text search capabilities, optimized content indexes, rich linguistic rules, and analysis.

This chapter describes both approaches, and explains how to create indexes and ensure that your XML document
searches are efficient. Then, in the “Best Practices” section, it explains how to choose between the two.

[« Frevious Jiecr |

[« Fprevious [nexr s |
XPath-Based Searches

Using XPath-based queries is straightforward. You simply use the XPath expressions in XMLType functions to
specify the content retrieval from XML documents. The following is an example product document in XML:

<Pr oduct >
<Name>XSLT Processor</ Name>
<Descri pti on | ast updat e="03-07-2003">
<What i sS>XSLT Processor mekes use of
<St andard type="WBC'>XSLT</ St andard> | anguage defi ned by the Wrld
W de Web Consorti um (<KEYWDRD>WBC</ KEYWORD>) to
<Functi on>transf or nx/ Functi on> XM. docunents into other formats.
</ What i s>
<Or acl eSupport >Oracl e supports XSLT in SQ., PL/SQ@, JAVA and C/ C++.
</ Oracl eSupport>
</ Descri pti on>
</ Product >

To query the XML content, you can use the following XPath expressions:
1. What is the name of product?

XPath: /Product/Name

2. What are the W3C standards supported by the product?
XPath:/Product//Standard[@type = “W3C"]

3. What is the description of the product, which is updated after March 1, 2003?
XPath:/Product/Description[@lastupdate>* 03-01-2003"]

In Oracle Database 10g, these kinds of XPath expressions can be used within EXISTSNODE() to search the XML
documents in XMLTypes.

Searching the XML Document Using XPath

To illustrate how to use XPath in EXISTSNODE(), a table called productis created, which includes the product_id,
the product name, and the description column:

CREATE TABLE product (
product i d NUMBER PRI MARY KEY,
name VARCHAR2(200),
descri pti on XM.Type) ;

Thedescription is defined as an XMLType column to store the product descriptions in XML. The description
column uses CLOB as its storage, which by default holds up to 4GB of text. After the table is created, you can insert
new product records as follows:

I NSERT | NTO product (product _id, nane, description)
VALUES(1, ' XSLT Processor', XM.Type(' <Description>
<What i s>Based on the <Standard type="WBC'>XSLT</ St andar d> standard
defined by the World Wde Wb Consortium (<KEYWORD>WBC</ KEYWDRD>) ,
XSLT Processors <Function>transforn</ Functi on> XM. docunents into
ot her formats. </ Whati s>
<Or acl eSupport >Oracl e supports XSLT in SQ, PL/SQ@, JAVA and
d C++. </ O acl eSupport >
<Pr oductDet ai | s>
<Product nanme="XSLT for C'>
<Description>XSLT for Cin Oacle XDK 10g provides the high-performance
XSLT Mirtual Machine, which conmpiles the XSL Styl esheets and perforns the
XSLT transfornmation using the fixed menory stack. </Description>
<Devel oper >
<K rst_Nanme>John</ Fi rst _Name>
<Last _Nanme>Sm t h</ Last _Name>

<Emai | >John. Sni t h@r acl e. conx/ Emai | >
</ Devel oper >
</ Pr oduct >
</ Product Det ai | s>
</ Description>"));

| NSERT | NTO product (product _id, name, description)
VALUES(2, ' XSQL', XM.Type(' <Descri pti on>
<What i s>XSQL produces dynam c XM. docunents based on one or nmore SQL
queries and can optionally apply <Standard type="WC"'>XSL</ Standar d>
Styl esheets to <Functi on>transforn</Functi on> XML docunents. Its Java
Servlet interface provides rich HTTP managenment functionality, such as
Cooki es, <Standard type="WBC'>HTTP</St andar d> session paraneters
etc. </Whati s>
<Or acl eSupport >Java command-line utility, run-tine Servlet engi ne and
ext ensi bl e Java devel oprment franmework are provi ded. </ O acl eSupport >
<Pr oductDet ai | s>
<Product name="XSQ@ for Java">
<Description>XSQ. for Java support FOP serialization</Description>
<Devel oper >
<Fi rst _Name>Ri char d</ First_Name>
<Last Name>Lee</ Last Nane>
<Emmi | >R chard. Lee@r acl e. conx/ Emai | >
</ Devel oper >
</ Pr oduct >
</ Product Det ai | s>
</ Description>"));

You can use the EXISTSNODE() function to search the product descriptions as follows:
SQ > SELECT product _id, nane
2 FROM product
3 WHERE EXI STSNODE(descri pti on,
"//*[contains(.,"HTTP") and contains(.,"SQ@")]"')>0;
PRODUCT_| D NAME

The EXISTSNODE() function takes an XMLType as the first parameter and an XPath expression as the second
parameter. In the XPath expression, the XPath function contains(string1,string2)is used to handle the string
matching. The contains()function returns TRUE if the first string argument (stringl)contains the substring equal to
the second argument (string2). According to the XPath standard, you can add andororlogic operators between
twocontains() functions. In the preceding example, the XPath-based query returns all products that contain both
HTTP and SQL in the product description.

Note that all the text in XPath expressions is case sensitive and that all the logic predicates in XPath, such as and
andor, have to be in lowercase. For example, the following query produces an ORA-31013: Invalid XPath
Expression error because AND is used instead of and in the logic predicates:
SQ@> SELECT product _id, name

2 FROM product

3 WHERE EXI STSNODE(descri pti on,

"//*[contains(.,"HTTP') AND contains(.,"SQ.")]")>0;
FRQM product
*

ERROR at line 2:
ORA- 31013: Invalid XPath expressi on

Because the XPath expressions are case sensitive, sgl and SOL are treated as different strings. As a result, the
following query will not return the products containing the word SQL in their description:
SELECT product_id, nane
FROM pr oduct
WHERE EXI STSNCDE(descri ption,'//*[contains(.,"HITP")
and contains(.,"sql")]")>0;

To make the search case insensitive, you can enumerate all the possible combinations of the characters in a word.
For example, the following query will return all the products whose description contains either SQL or sql:

SELECT product_id, nane
FROM pr oduct
WHERE EXI STSNCDE (descri ption,
"/l *[contains(.,"HTTP') and (contains(.,"SQ@Q")
or contains(.,"sql"))]")>0;

However, covering all the possible combinations is annoying. In Oracle Database 10g, you can instead use the
ora:contains() function, which provides case-insensitive text searches. Another reason to use ora:contains() is
that the contains() XPath function does not have word semantics. It performs only consecutive character-by-
character comparisons. This may result in unexpected query results, as shown in the following example. After the
<OracleSupport> element in the product description of the XSQL Servlet has been updated, as follows:

SQ@ > UPDATE product SET descri pti on=UPDATEXM.(descri ption,

'/ Descri ption/Oracl eSupport "',

'<CracleSupport>Oracl e XSQ provides Java command-line utility,
run-time Servlet engine and an extensi ble Java devel opnent frameworKk.
</ Or acl eSupport>")

WHERE pr oduct _i d=2;

a query on the updated product table will return the following result:

SQ. > SELECT product _id, nane
FROM pr oduct
WHERE EX STSNODE(descripti on,
"/ /Oracl eSupport[contains(.,"SQ.")]")>0;
PRODUCT_| D NAME
1 XSLT Processor
2 Xs@

This query result is not anticipated! The reason that the contains()function returns TRUE is that in the
<OracleSupport> element of the product description for XSQL Servlet, the string XSOL contains SQL as a
substring. Using ora:contains() instead, with its support for word semantics, gives an accurate text search result,
as shown in the following example:
SQ. > SELECT product _id, nane
FRQM product
WHERE EXI STSNCDE(descri ption,
"/1 Oracl eSupport[ora:contains(.,"SQ")>0]",
"xm ns:ora="http://xmns.oracl e.com xdb"') >0;

PRODUCT _| D NAME

1 XSLT Processor

In Oracle Database 10g, the ora:contains() function can be used at any place in the XPath expressions and can
leverage the full text search functionality in Oracle Text, such as word stemming, fuzzy matching, proximity
searching, specifying searching policies, and so on. For example, the following query uses word stemming to query
the product descriptions:
SQ > SELECT product _id, nane

FROM pr oduct

WHERE EXI STSNODE(description, '//*[ora:contains(.,"$base")>0]",

"xmns:ora="http://xm ns. oracle.com xdb"") >0;

PRODUCT _| D NAME

1 XSLT Processor
2 XS@

Though the word base is not shown in the XML document, the product is returned because the word based has the
same word stem.

In Oracle Database 10g, the EXISTSNODE() function can be used in the WHERE clause of SQL queries along with
any other SQL predicates or combinations of itself. Here is one example:

SELECT product_id, nane
FROM pr oduct
WHERE EXI STSNCDE(descri ption, '// Oracl eSupport[ora:contains(.,"sql")>0]",
"xmns:ora="http://xm ns. oracle. com xdb""')>0
AND EXI STSNODE(descri ption,'// Standard[@ype="WBC'] ") >0;

This example specifies the query for What are the Oracle products that support W3C standards and provide SQL
interfaces?

How XPath-Based Searching Works

When you specify an XPath expression in EXISTSNODE(), the Oracle XML DB evaluates the XPath expressions
and executes queries based on the XMLType storage.

If XML is stored in CLOB XML Types, the Oracle XML DB functionally evaluates the XPath expressions by building
the DOM tree of the XML document in memory and resolves the XPath programmatically using the methods
provided by DOM. If a CTXXPATH index is created, the XML DB engine first uses the CTXXPATH index to get the
superset of the result data set and then performs DOM-based functional evaluation. If the ora:contains() function is
used in the XPath expressions, the selected XML data will be loaded into memory for additional full text-search
analysis.

If XML is stored in XML Schema-based XMLTypes, the Oracle XML DB first rewrites the XPath expressions into
equivalent SQL statements. Then, based on the object-relational (O-R) data structures, it utilizes whichever index is
available to access the data in the object tables. This query-translation process is called the query rewrite of XPath-
based queries. Because of the query rewrite process, the XML data retrieval can be as fast as accessing the SQL
data.

In the Oracle XML DB, query rewrite is a different process than the query rewrite widely used in data warehouse

applications, where users do not need the query rewrite privieges and do not need to create materialized views or
summary tables. To make sure you understand the execution process, the following example creates another table
that stores the product descriptions in XML Schema-based XMLTypes. First, you need to register an XML schema:

BEG N
DBM5_XM_SCHEMA. REA STERSCHEMA(' product . xsd',
"<?xm version="1.0" encodi ng="UTF-8"7?>
<xs:schema xm ns:xdb="http://xm ns. oracle. com xdb"
xm ns:xs="http://ww.w3. or g/ 2001/ XM_Schenma"
el ement FormDefaul t="qual ifi ed">
<xs: el enment name="Description">
<xs:conpl exType xdb: SQLType="DESCR PTI ON_TYPE' >
<Xs: sequence>
<xs:element nane="Whati s" xdb: SQLNane="\WHATI S"
xdb: SQLType="WHATI S_TYPE" >
<xs: conpl exType m xed="true">
<xs:choice m nCccurs="0" maxCccur s="unbounded" >
<xs: el ement name="Function" type="xs:string"/>
<xs: el ement name="KEYWORD' type="xs:string"/>
<xs: el enent name="St andard" >
<xs: conpl exType>
<xs: si mpl eCont ent >
<xs:extension base="xs:string">
<xs:attribute nanme="type" type="xs:string" use="required"/>
</ xs: ext ensi on>
</ xs:si npl eCont ent >
</xs: conpl exType>
</ xs: el ement >
</ xs: choi ce>
</ xs:conpl exType>
</xs: el ement >
<xs:elenment name="0Oracl eSupport" type="xs:string"/>
</ Xs: sequence>
<xs:attribute name="nane" type="xs:string" use="required"'/>

</ xs: conpl exType>
</ xs:el ement >
</xs:schema>', TRUE, TRUE, FALSE, FALSE);
END;

After you have registered the XML schema, you can create a product table by specifying the structured XMLType
storage for the description column:
CREATE TABLE pr oduct (
product i d NUVMBER PRI MARY KEY,
nanme VARCHAR2(200),
descri pti on XM.Type)
XMLTYPE COLUWN descri pti on ELEMENT "product.xsd#Descri ption";

You then can insert the same set of data into the table as shown in the previous examples, except that you need to
use the XMLType.CreateSchemaBased XML () function to specify the registered XML schema URLs during data
insertions:

| NSERT | NTO product (product _id, name, description) VALUES(1, 'XSLT
Processor', XM.Type('...).CreateSchemaBasedXM.('product.xsd'));

Looking at the following XPath query:

SELECT product_id, nane
FROM pr oduct
WHERE EXI STSNCDE(descri pti on, '/Description[@anme="XSQ."]")>0;

The Oracle XML DB parses and rewrites the XPath query to a SQL query that looks like the following:

SELECT VALUE(descri pti on)
FROM pr oduct p
WHERE descri pti on. XMLDATA nane=' XSLT ;

Note In the object-relational storage of XMLTypes, XMLDATA refers to the root element of the XML document
in the XMLType, and SYS_NC_ROWINFO$ represents the XMLType object.

However, not all XPath-based queries can be rewritten. In Oracle Database 10g, if the XPath expression contains
the following items, the query cannot be rewritten:

m Al XPath functions except not(),floor(),ceiling(),substring(),string-length(), and translate()
m XPath variable references

m Any axes except the child and attribute axes

m Recursive type definitions with descendent axis

m UNION operators

If the registered XML schema of an XMLType contains the following elements and the XPath expression includes
nodes under these elements, the query also cannot be successfully rewritten:

= Elements containing open content, namely ANY content
m Elements mapped to SQL CLOBs

The advantage of query rewrite is that it enables the use of B*Tree or other indexes on the XML data to speed up
the query response. Without query rewrite, the XPath queries require in-memory construction of the XML object tree
and programmatic evaluation through the object tree traversal.

Note Like the other Oracle-provided extension functions that are under the Oracle XML DB namespace
(http://xmins.oracle.com/xdb), such as ora:upper(),ora:lower(),ora:to_date(),ora:to_number() and
ora:like(), the ora:contains() function is rewritten to a SQL query. Additionally, it uses the CONTEXT
index if available, and the XML element or attribute used by ora:contains() is an object in the O-R tables
of the XMLType.

Optimizing XPath-Based Queries Using Indexes

http://xmlns.oracle.com/xdb

To speed up XPath-based queries, you can create indexes on XML documents. There are four main types of
indexes available in Oracle Database 10gfor XMLTypes: B*Tree indexes, bitmap indexes, function-based indexes,
and CTXXPATH indexes. The following sections discuss how to use them.

B*Tree Indexes

If an XML document is stored in O-R XMLTypes, you can create B*Tree indexes on the XML content. Since XPath-
based queries are rewritten to SQL queries, B*Tree indexes can speed up all rewritten SQL queries. In the following
example, a B*Tree index is created on the name attribute of the <Description> element, and the EXPLAIN PLAN
command is run to examine the query execution plan:

SQ@ > CREATE UN QUE | NDEX nane_i dx ON product(description.xm data. "nanme");
| ndex creat ed.
SQ@ > EXPLAIN PLAN FOR

SELECT count(*)

FROM pr oduct x

WHERE x. descri pti on. EXI STSNODE('/ Descri pti on[@ane="XSLT']")=1;
Expl ai ned.
SQ> @:\oracle\rdbnms\adm n\utl xpls
PLAN_TABLE_OUTPUT

| 1d | Operation | Namre |Rows | Bytes | Cost (%CPU)| Tinme |
| O | SELECT STATEMENT | | 1] 496 | 3 (34) |00:00: 01
| 1 | SORT AGGRECATE | | 1] 496 | | |
| 2 | TABLE ACCESS | | | | | |
| | BY | NDEX ROW D | PRODUCT| 1 | 496 | 3 (34) |00:00: 01
| *3 | I

| NDEX UN QUE SCAN| NAVE_| DX| 1 | 2 (50)|00: 00: 01]

3 - access("X"." SYS_NOD0010$"=' XSLT')

14 rows sel ected.

The INDEX UNIQUE SCAN that uses the NAME_IDX shows that the created B*Tree index is used when executing
the XPath-based query.

Bitmap Indexes

Bitmap indexesstore all the index keys in a bitmap instead of the list of ROWIDs, as in B*Tree indexes. Each bit in
the bitmap corresponds to a possible ROWID. If the bit is set, it means that the row with the corresponding ROWIDs
contains the key value. A mapping function converts the bit position to the actual ROWID, so the bitmap index
provides the same functionality as a regular index even though it internally uses a different representation.

If the number of different key values is small, bitmap indexes are space efficient. For XML documents, you can
create bitmap indexes on those XML elements containing a high duplication of data. In the following example, a
bitmap index is created for the types attribute in the <Standard> element:

SQ> CREATE BI TMAP | NDEX bi t map_i dx ON

product (descri pti on. exi st sNode(' / Descripti on/ Watis/ Standard@ype'));
| ndex creat ed.

Then, you can run the following EXPLAIN PLAN command to examine the query execution details:

SQ@ > EXPLAI N PLAN FOR

SELECT /*+ index(x bitmap_idx) */ count(*) FROM product x

WHERE Xx. descri pti on. EXI STSNCDE(' / Descripti on/ Watis/ Standard@ype') =1;
Expl ai ned.

SQ> @:\oracl e\rdbns\ adm n\utlxpls
PLAN_TABLE_OUTPUT

=

SELECT STATEMENT			496	69	00: 00: 01
SORT AGGREGATE					
TABLE ACCESS BY					
1 NDEX ROWD	PRODUCT	4	496	69	
BITMAP CONVERSI ON					
TO RON DS					
I					

Bl TMAP | NDEX FULL SCAN BI TMAP_I DX

2 - filter(EX STSNODE(SYS_MAKEXM_ (' 0602BCF5CB2048E2BBA19796753F5D49"
2812, X. " SYS_NC000043%", X. " SYS_N0007%"),
"/ Description/VWatis/ Standard@ype')=1)
16 rows sel ected.

The BITMAP INDEX FULL SCAN that uses the BITMAP_IDX shows that the created bitmap index is used when
executing the XPath-based query.

Function-Based Indexes

A function-based index is created based on the values returned by function expressions. After the values are
computed and stored, SQL queries using the functions in their WHERE clauses will be sped up by use of the index.
The function used for building the index can be either an arithmetic expression or an expression that contains a
PL/SQL function, a C callout, or a SQL function.

In the Oracle XML DB, when query rewrite cannot be used on O-R XMLTypes because of the previously discussed
limitations, you can create a function-based index using XMLType functions. The following example creates a
function-based index and the EXPLAIN PLAN command is run to examine the query execution plan:

SQ > CREATE | NDEX fi dx_exi st node ON PRODUCT(
EXTRACT(description,'/Description/Watis/Function').getStringVval());
I ndex creat ed.

SQ@> EXPLA N PLAN FOR

SELECT count(*)

FROM pr oduct x

WHERE EXTRACT(descripti on,

"/Description/ Whatis/Function').getStringVal ()= transform;

Expl ai ned.
SQ@> @:\oracle\rdbns\adnm n\utl xpls
PLAN_TABLE_OUTPUT

| 1d | Operation | Nane | Rows| Bytes| Cost (%CPU) | Time |
0 | SELECT STATEMENT | | | 496 | 2 (50) | 00:00:01]
1 | 496 | | |

|
| SORT AGEREGATE | |
| I NDEX RANGE SCAN| FIDX EXISTNODE | 1 [496 | 2 (50)| 00:00:01 |

— R R

2 - access((EXTRACT(SYS_MAKEXM_(' 1279EA6100084050A95214274890C924" ,
3065, X " SYS_NQ0004$", X. "SYS_NC00007$"),' / Descri ption/ Watis/Function'))
='transform)

15 rows sel ected.
The INDEX RANGE SCAN that uses the FIDX_EXISTNODE shows that the created function-based index is used
when executing the XPath-based query.

CTXXPATH Indexes

To improve the performance of XPath-based searches, CTXXPATH index was introduced in Oracle9i R2 for
XMLTypes, which serves primarily as a content filter for EXISTSNODE(). When CTXXPATH index is used by
EXISTSNODE(), a superset of the results of the XPath expression is returned, as in the following query:

SELECT product_id, nane

FROM pr oduct

WHERE EXI STSNCDE(descri pti on,

" /Description[@anme="XSLT"']/ O acl eSupport[ora: contai ns(.,"SQ.")>0]",
"xm ns:ora="http://xm ns. oracl e. coni xdb""') >0;

The CTXXPATH index can’t return the results for the complete XPath query since it can’'t process ora:contains(),
but it can filter the content and return all the documents containing the path /Description/[@name="XSLT"]. Based
on the superset returned by the CTXXPATH index, EXISTSNODE() then processes a significantly reduced number
of XML documents.

Creating the CTXXPATH index is similar to creating the CONTEXT index provided by Oracle Text. For example, you
can create a CTXXPATH index on the description column of the product table as follows:

CREATE | NDEX ct xxpat h_i dx ON product(descri pti on)

| NDEXTYPE | S CTXSYS. CTXXPATH,;

As with the CONTEXT index, the CTXXPATH index requires index synchronizations after insert and update DML
operations. Additionally, it supports only XPath without XML namespaces. If the XPath expression contains
namespaces, the CTXXPATH index will not be used for XPath functions, numerical range operators, arithmetic
operators, or XPath axes. The use of the CTXXPATH index also depends on the database optimizers. For example,
if the Cost Based Optimizer(CBO) decides that the CTXXPATH index is too expensive to use, it also will not be
used by the EXISTSNODE() function. In order to let the database optimizers properly estimate the cost, you can use
the ANALYZE command or the DBMS_STATS package.

[« Freviovs [nexrs]

[« Fprevious [nexr s |
Full Text Search

Oracle Text, known as Oracle interMedia Text in Oracle8i, provides the full text search functionality that allows users
to quickly find the documents that contain certain words or phrases.

To utilize the full text search functionality in Oracle Text, you can create a CONTEXT index provided by Oracle Text
and specify searches in SQL using the CONTAINS() function. For example, you can create a CONTEXT index on
thedescription column of the product table as follows:

CREATE | NDEX desc_i dx ON product(descri ption)
| NDEXTYPE | S CTXSYS. CONTEXT;

The CONTEXT index type is specified by the INDEXTYPE clause. After the CONTEXT index is created, you can
submit a SQL query as follows:

SELECT name FROM product WHERE CONTAI NS(description, 'XSLT')>0;

The first argument of the CONTAINS() function is the column being searched, and the second argument includes
the search words or phrases. The CONTAINS() function returns a number for each row in the table, indicating how
closely the document matches the query. If the returned number is greater than zero, the document matches the
query. As a result, the example query returns the name of every product containing XSLT in its description.

By default, the CONTEXT index does not provide transactional support for the DML operations, including data
insertions and updates. You need to synchronize the CONTEXT index to ensure that the index is up-to-date.

In Oracle Database 10g, a new index property called TRANSACTIONAL is introduced for the CONTEXT index to
provide transactional support, as shown in the following example:

CREATE | NDEX desc_i dx ON product(description)
| NDEXTYPE | S CTXSYS. CONTEXT
PARAMETERS(' TRANSACTI ONAL') ;

if the CONTEXT index is created with the TRANSACTIONAL property turned on. In addition to processing the
synchronized ROWIDs in the CONTEXT index, the CONTAINS() function does in-memory indexing and processing
for the updated or inserted ROWIDs that have not yet been synchronized. You still need to synchronize the index to
bring the pending ROWIDs into the CONTEXT index for better performance.

In summary, the following is the basic procedure for using the full text search functionality provided by Oracle Text:
1. Create a CONTEXT index on VARCHAR2, CLOB, BLOB, BFILE, UriType, or XMLType columns.

2. Query table-indexed columns using the CONTAINS() function in SQL.

Synchronize the CONTEXT index after DML operations and optimize the index regularly to ensure better
performance.

We will discuss the CONTEXT index optimization in the following sections.

Note Oracle Text provides a transaction-based index called the CTXCAT index. However, normally it is not used
for indexing XML documents because it supports only CHAR and VARCHAR?2 columns and has limited
support for structured document search.

Searching XML Using Oracle Text

In searching XML, you often want to use the structure of the XML document to restrict the search. In Oracle Text,
document sections are used to define and add structure information from the XML document to the CONTEXT
index. Each document section is defined based on the start tag/end tag of the XML elements or on certain XPath
detections. During indexing, the CONTEXT index stores the document sections for every indexed token. This allows
users to specify the scope of the text search either by using XPath expressions with INPATH/HASPATH operators
or by using XML element names with the WITHIN operator.

Oracle Text provides three types of document section for XML documents: AUTO_SECTION_GROUP,
PATH_SECTION_GROUP, and XML_SECTION_GROUP. Each section group is an object that consists of a
collection of tags that should be indexed and a section type specification that indicates the format of the document
and how to parse the format.

Both AUTO_SECTION_GROUP and XML_SECTION_GROUP index the document based on the element/attribute
names. The difference between the two is that AUTO_SECTION_GROUP indexes every XML tag whereas
XML_SECTION_GROUP indexes only the tags in its tag collection. PATH_SECTION_GROUP indexes all the
element tags and attributes while maintaining the XPath information.

Note Using AUTO_SECTION_GROUP in Oracle Database 10g is not recommended, because its searching
functionality can be fully covered by the PATH_SECTION_GROUP index.

Using PATH_SECTION_GROUP

PATH_SECTION_GROUP is the default section group for XMLTypes. Since PATH_SECTION_GROUP indexes all
the sections in the XML document, there is no need to declare the document sections to be indexed. Therefore,
users normally use the default instance of PATH_SECTION_GROUP provided by Oracle Text to create the index.
This default instance of PATH_SECTION_GROUP contains the predefined full text search preferences. For
example, you can create a CONTEXT index called product_idx with PATH_SECTION_GROUP as follows:

CREATE | NDEX product _i dx ON product (descri pti on)
I NDEXTYPE | S CTXSYS. CONTEXT
PARAMETERS(' SECTI ON GROUP CTXSYS. PATH_SECTI ON_GROUP') ;

With PATH_SECTION_GROUP, you can use the WITHIN operator, but you can additionally choose from two more-
powerful operators, the HASPATH or INPATH operators, to incorporate a subset of XPath expressions within the
CONTAINS() function. HASPATH returns TRUE if the specified XPath exists in the XML document, and INPATH
returns TRUE if the text specified exists in the XML content selected out by the XPath expressions. Here are
examples of both operators in action:

SQ@ > SELECT product _id, name
FROM pr oduct
VWHERE CONTAINS(descri ption,' S | NPATH / Descri ption/
Or acl eSupport) ') >0;
PRODUCT_I d NAME
1 XSLT Processor
SQ > SELECT product _id, nane
FROM pr oduct
WHERE CONTAI NS(descri pti on,
' HASPATH(/ Descri pti on// St andard[@ype="WBC"'])") >0;

PRODUCT | D NAMVE

2 XSQL
1 XSLT Processor

The first SQL query uses INPATH to limit the <OracleSupport> element to be a direct child of the root element,
<Description>, which contains the word SQL. The HASPATH operator in the second query is used to evaluate the
XPath expression and return TRUE if the XPath /Description//Standard[@type="W3C"] exists in the XML
document.

Note The text used in XPath is case sensitive; for example, INPATH(//Product) is different from
INPATH(//product).

Using XML_SECTION_GROUP

The CONTEXT index in PATH_SECTION_GROUP is easy to use, but it can be expensive because it indexes all the
document sections in the XML document, including those whose content will not be searched. To avoid the
overhead, you can use XML_SECTION_GROUP to specify a limited number of document sections based on the
XML elements. For example, you can create an instance of XML_SECTION_GROUPcalled productGroup and

limit the index on one document section called whatis_sec containing content from the <Whatis> element:

EXEC CTX _DDL. CREATE_SECTI ON_GROUP(' pr oduct Group' , ' XML_SECTI ON_GROUP') ;
EXEC CTX_DDL. ADD ZONE_SECTI ON(' pr oduct Group', "whatis_sec', ' Whatis');

Then, you can create a CONTEXT index using the productGroup:
CREATE | NDEX desc_xml _i dx ON product(description)

| NDEXTYPE |'S CTXSYS. CONTEXT
PARAVETERS(' SECTI ON GROUP pr oduct Gr oup');

The SQL query can use the WITHIN operator to specify the document section:

SELECT nane
FROM pr oduct
WHERE CONTAI NS(description, 'java WTHI N whati s_sec') >0;

You can also add a new zone section named orasupport_secusing the tag name of the <OracleSupport>
element by rebuilding the index:

ALTER | NDEX desc_xm _i dx REBU LD
PARAMETERS (' ADD ZONE SECTI ON orasupport_sec TAG Oracl eSupport');

However, the following SQL query will not return any rows:

SELECT nane
FROM pr oduct
WHERE CONTAI NS(description, 'java WTHI N orasupport_sec') >0;

This is because the rebuild process only modifies the index metadata, and does not rebuild the index in any way.
This means that these section updates do not affect any indexed documents. To include the existing documents in
the index with the new sections, you need to manually mark the documents for re-indexing or simply drop and re-
create the index.

In contrast to PATH_SECTION_GROUP, XML_SECTION_GROUP is efficient. However, when the element names
are not unique in the XML document, you cannot create zone sections to differentiate these elements in the full text
searches.

Synchronizing the Index

Unlike the B*Tree index, where the database maintains the index on the basis of DML transactions, the CONTEXT
index is not updated after the DML transactions, including the data insertions and updates. Instead, only the
ROWIDs of the updated or inserted table records are kept for later index synchronization. Therefore, if there are any
inserts or updates of documents in the base table, you need to synchronize the CONTEXT index for the records to
be part of the searching content.

Note The CONTEXT index transactionally supports data deletion operations.

You can decide whether synchronization is needed by reviewing the CTX_USER_PENDING view, where all
ROWIDs related to DML operations are stored. For example, if the product table is updated, you can see new
entries in the CTX_USER_PENDING view:
SQ > UPDATE product SET

descri pti on=updat eXM_(descri ption,'/Description/ O acleSupport"',

"<Oracl eSupport>Oracl e XSQL provi des command-line utility, run-tine

Servl et engine and extensi bl e Java devel opnent framewor k

</ Oracl eSupport>"')

VWHERE product _i d=2;
1 row updat ed.

SQ@ > SELECT pnd_index_nane, pnd_rowid, TO CHAR(pnd_ti mestanp,
"dd-mon-yyyy') tinestanp
FROM CTX_USER_PENDI NG,

PND_| NDEX_NAVE PND_ROW D TI MESTAMP

PRODUCT _| DX AAAKG] AAEAAAADS AAB 09- aug- 2003

You can synchronize your index manually by calling the CTX_DDL.SYNC_INDEX() procedure. In order to have the
execution privilege on the CTX_DDL PL/SQL package, you need to have the CTXAPP role granted by the CTXSYS
user:

GRANT ct xapp TO &user_nane;

The following example synchronizes the product_idx index using 2MB of memory:

SQ> BEG N
2 CTX_DDL.SYNC | NDEX(' product i dx', '2M);

3 END;
4
PL/ SQL procedure successful |y conpl et ed.

SQ > SELECT pnd_index_nanme, pnd_rowid, TO CHAR(pnd_ti nestanp,
"dd-non-yyyy') tinmestanp FROM CTX_USER_PENDI NG;
no rows sel ected

After index synchronization, the CTX_USER_PENDING view will not have any entries.

Alternatively, you can run CTX_DDL.SYNC_INDEX() automatically at regular intervals using the
DBMS_JOB.SUBMIT() procedure. Oracle Text includes a SQL script you can use to do this:

$CRACLE_HQVE/ ct x/ sanpl e/ scri pt/drjobdm . sql

$CRACLE_HQVE/ ct x/ sanpl e/ scri pt/ dr bgdml . sql

To use this script, you must be the owner of the index and you must have execution privileges on the CTX_DDL
package. You must also set the JOB_QUEUE_PROCESSES parameter in the Oracle initialization file. For example,
to set the index synchronization to run every 360 minutes on product_idx, you can issue the following command in
SQL*Plus:

SQ> @rjobdm product _idx 360;

You need to properly choose an interval for CONTEXT index synchronization. This is because synchronizing the
CONTEXT indexes right after each data insertion or update may result in index fragmentation, which may
dramatically reduce the performance of the full text search queries.

If the application requires frequent synchronization of the CONTEXT index or even requires the transactional update
of the CONTEXT index, you then need to schedule additional regular CONTEXT index optimization to ensure high
performance.

How Oracle Text Search Works

Knowing the details of how searching with Oracle Text works helps you build better searches. This is particularly
useful when you want to know why the data is selected. This section discusses those features that help you
understand the search process.

Whenever the CONTEXT index is created, all the XML documents are analyzed and a set of tables is created to
store the indexed tokens. For example, along with the product_idxindex, the following index tables are created:

SQ@ > SELECT tabl e name FROM user_t abl es
VHERE tabl e_nane LI KE ' %PRODUCT | DX% ;

TABLE_NAME
DREPRCDUCT _| DX$
DRSPRCDUCT | DX$K
DREPRCDUCT _| DX$N
DRSPRCDUCT | DX$R

The Oracle Text engine creates four tables automatically. These tables start with the DR$ prefix and end with the
suffix to be $I, $K, $N, or $R. Between the prefix and suffix is the index name.

The DR$<INDEX NAME>$KandDR$<INDEX NAME>$R tables store the mapping of the row information from the
internal document identifiers (DOCIDs) to external ROWID values. The database optimizer (Cost Based Optimizer)
determines the type of lookup. For functional lookups, the $K table is used. For indexed lookups, the $R table is
used. Hence, you can easily find out whether a functional or indexed lookup is used by examining the SQL trace and
looking for the $K or $R tables.

The $Ntableis used to maintain information for the deleted rows and the $I table is the one that stores all the
tokens indexed by Oracle Text. The search queries will look up all the tokens stored in the $I table before returning
the result. The following is the schema of the $I table:

SQ > DESC DR$product _i dx$l ;
Namre Nul I ? Type

TOKEN_TEXT NOT NULL VARCHAR2(64)

TOKEN TYPE NOT NULL NUMBER(3)
TOKEN _FI RST NOT NULL NUMBER(10)
TOKEN_LAST NOT NULL NUMBER(10)
TOKEN_COUNT NOT NULL NUMBER(10)
TOKEN | NFO BLOB

The TOKEN_TEXT column stores the tokens and the TOKEN_INFO column stores the information about the row
and word positions where the token occurs.

To ensure the preferred content is indexed by Oracle Text, you can use the following command to check the $I
table:

SELECT TOKEN_TEXT FROM DR$pr oduct _i dx$!
WHERE TOKEN_TEXT LI KE ' XSLT' ;

This SQL query checks whether the word XSLT is indexed by the CONTEXT index called product_idx.

Sometimes an indexing operation might fail or not complete successfully. When the system encounters an error
indexing a row, it logs the error in an Oracle Text view. You can view these errors for specific users using the
CTX_USER_INDEX_ERRORS view or query the CTXSYS errors for all users using the CTX_INDEX_ERRORS
view. For example, to view the most recent index errors of the current logged in user, you can issue the following
SQL command:

SELECT err_tinestanp, err_text
FROM ct x_user _i ndex_errors
ORDER BY err_ti mestanmp DESC;

To clear the view of errors, you can issue the following command:
DELETE FROM CTX_USER_| NDEX_ERRORS;

Optimizing Oracle Text Searches

We have discussed that you need to optimize the CONTEXT index after multiple index synchronizations. This is
because index synchronization may result in index fragmentation that adversely affects query performance.

Additionally, in order to improve query response time, when many rows are deleted from the base table, you need to
optimize the CONTEXT index in FULL mode. This is because the old data in the index table is marked only as
deleted but is not cleaned up immediately. Because the old data takes up space and can cause extra overhead at
query time, you must remove this data from the index by optimizing the index in FULL mode. This is called garbage
collection. Optimizing in FULL mode for garbage collection is also necessary when you have had frequent updates
or deletions to the base table. If you rarely delete or update data from a table, you can use the OPTIMIZE FAST
option. Otherwise, you should use OPTIMIZE FULL.

You can also optimize the index in TOKEN mode, where you specify a specific token to be optimized. You can use
this mode to optimize index tokens that are frequently searched, without spending time optimizing tokens that are
rarely referenced. For example, you can specify that only the token “Functionality” in the product descriptionbe
optimized in the index if you know that this token is updated and queried frequently. To optimize an index in TOKEN
mode, you can use CTX_DDL.OPTIMIZE_INDEX() as follows:

BEA N

CTX_DDL. OPTI M ZE_| NDEX(' product _i dx', 't oken',
TOKEN=>' Functionality');

END;

An optimized token can improve its query response time. Again, the tokens can be found in the $I table.

To help you decide whether to optimize your index, you can create a statistical report on your index using the
CTX_REPORT.INDEX_STATS() procedure. The report includes information on the optimal row fragmentation, a list
of the most fragmented tokens, and the amount of garbage data in your index. Although this report might take a long
time to run for large indexes, it really helps.

Advanced Text Searches

Oracle Text provides many full text search features. This section discusses techniques on how to return scores that
reflect the relevance of the query and returned records, how to leverage the full text search on XML documents in

the XML DB Repository, and how to set up categories for XML document searching.
Using Scores

When you issue a full text search query, Oracle Text returns a relevance score for each document returned. The
score is between 1 and 10. The higher the score, the more relevant the document is to the query. The score can be
selected using the SCORE() operator with a label of 1:

SQ > SELECT score(1) AS score, product_id, name

FROM pr oduct
VWHERE CONTAINS(descri ption,' WVBC | NPATH(// St andar d/ @ ype) ', 1) >0;

SCORE PRODUCT_I D NANVE
6 2 XSQL
3 1 XSLT Processor

You can use these scores to order the returned documents by showing the most relevant documents first.

Searching XML in the Oracle XML DB Repository

To add full text search for XML files stored in the Oracle XML DB repository, you can create a CONTEXT index
using a subtype of the UriType called XDBUriType.

Note Additionally, you can create CONTEXT indexes on files in HTTP server, FTP server, and OS file systems
using the UriType or its subtypes such as the HTTPUriType.

For example, you can create a table with an XDBUriType column containing the Oracle XML DB repository URIs
pointing to the files stored the XML DB repository. For example, the XML DB repository URI of the xdbconfig.xml
file is /xdbconfig.xml:

CREATE TABLE nyconfig(url SYS. XDBURI TYPE) ;
| NSERT | NTO nyconfi g VALUES(SYS. XDBURI TYPE. CREATEUR (' / xdbconfi g. xm '));

Then, you can create a CONTEXT index on this column:
CREATE | NDEX config_idx QN myconfig(url) I NDEXTYPE IS CTXSYS. CONTEXT;

After the index is created, you can use the following SQL CONTAINS query to search the content:
SELECT * FROM nyconfig WHERE CONTAI NS(url, 'http')>0;

Category-Based Searching

When searching a large number of XML documents, you can classify the documents and establish the document
routing by creating a CTXRULE index. In Oracle Database 10g, you can build a CTXRULE index based on your XML
document queries.

The first step is to create a table of queries that defines the classifications. For example, you can create a
QUERY_CAT table to hold the category name and query text:

CREATE TABLE QUERY_CAT (

query_id NUMBER PRI MARY KEY,

cat egory VARCHAR2(30),

query VARCHAR2(2000));

You then can populate the table with the classifications and the queries that define each category. For example,
consider a classification for the subjects XMLandSOL:

| NSERT | NTO QUERY_CAT VALUES(1, ' XML Product', 'xm');
| NSERT | NTO QUERY_CAT VALUES(2, 'SQ', 'ABOUT(sql)'):

You can create the CTXRULE index as follows:

CREATE | NDEX ctxrul e_i dx ON query_cat (query)
| NDEXTYPE | S CTXSYS. CTXRULE;

After a CTXRULE index is created on the query set, you can use the MATCHES() function to classify the XML
documents. In the following example, a product_route table is created to store results of the document

classification:

create tabl e product_route
(product _id nunber,
cat egory varchar2(30));

The following PL/SQL code populates the product_route table using MATCHES():

DECLARE
QURSCR p_desc | S SELECT product_id, description FROM product;
BEG N
FOR item I N p_desc LOOP
FOR c1 IN (SELECT category
FROM quer y_cat
WHERE MATCHES(query, item description. getStringVval())>0)
LOooP
I NSERT | NTO product _rout e(product _i d, category)
VALUES (item product _id, cl.category);
END LOOP;
END LOOP;
END;

Using this functionality, you can classify XML documents into a number of predefined categories.

[erevious [e

[« Frevious|
Best Practices

Optimizing the performance of searches can be a trial-and-error process. You should regularly monitor the
performance to establish a plan for maintaining the indexes. The following are some tips to maximize the query
performance.

When to Use XPath-Based Searches

You should not overuse XPath-based queries on XML documents unless you can ensure that the query rewrite is
performed properly. Without query rewrite, the in-memory building of DOM trees or text analysis for ora:contains()
can be very expensive and prevent you from searching large numbers of XML documents.

In addition, you should know that without ora:contains(),XPath-based queries are limited to matching substrings
and may result in unexpected results.

Finally, the CTXXPATH index and functional indexes are both very useful for XPath-based searches when the query
rewrite cannot be used.

When to Use Oracle Text Searches

Compared to XPath-based queries, Oracle Text performs linguistic analysis and provides rich full text search
features that go beyond substring matching. For example, it allows you to create a concise abstract, called gist, for
the indexed XML documents:

CREATE TABLE ctx_gi st (query_id NUMBER,
pov VARCHAR2(80) ,
gi st CLCB);

BEG N
FOR item | N (SELECT product_id FROM product) LOOP
CTX DOC. G ST(' product _idx',itemproduct_id,'CTX A ST ,1,'P",
pov =>" GENERI C , numPar agraphs => 1);
END LOOP;
END;

This example uses the CTX_DOC.GIST() procedure to generate gists for the product descriptions, specifying the
size of the gist to be no more than one paragraph and inserting the created abstracts into a gist table called
ctx_gist.

Oracle Text provides better scalability for the searches on XML documents that cannot use query rewrite by
substantially reducing the processing overhead introduced by XML DOM tree creation and traversal, and the in-
memory text analysis for ora:contains().

Additionally, Oracle Text can deal with a variety of documents from various sources in multiple languages. The
document formats include Microsoft Word, PDF, Microsoft Excel, and HTML files. These documents can be stored
inside the Oracle database as well as outside the database and accessed over HTTP, FTP, or from file servers.
This, therefore, allows you to build Oracle Text indexes to optimally search XML documents stored both inside and
outside the database.

When to Use Oracle Text Partitioned Indexes

Table partitioning is good to use when dealing with a large number of XML data sets. In Oracle9i, Oracle Text
introduced the Local Partitioned Index, which is a partitioned index on a partitioned table with a one-to-one mapping
of index partitions to table partitions. This virtually splits up a large table and the CONTEXT index into a set of
smaller tables and indexes. It allows you to use local partitioned indexes instead of a global index.

For document systems, in which a large amount of new data is inserted every day, it is not practical to refresh the
Oracle Text index for all the data, because that can take a long time. The local partitioned index makes the index
more manageable, because after the DML operations you need to rebuild only the partition with the data changes,
not the whole index.

On the other hand, with the local partitioning, index partitions can be synchronized in parallel, thus increasing

uptime.

Finally, because the local partitioned CONTEXT index takes advantage of partition pruning and partition iteration to
filter out the ROWIDs of the other partitions, it can provide faster mixed and sorted queries.

Note The CTXXPATH index does not support local partitions.

[« rreviovs [nexr s |

[« Freviovs [nexrs]

Summary

This chapter discussed two types of searching strategies on XML documents: the XPath-based search using
EXISTSNODE() with ora:contains() and the CTXXPATH index, and the full text search using Oracle Text.

Both approaches can be used with other SQL predicates. However, the EXISTSNODE() search provides better
datatype comparisons and supports many XML native features such as namespaces, XPath functions, and entities.
The EXISTSNODE() search also uses the XML schema to rewrite the XPath-based queries if the XMLType is stored
in XML schema—based XMLType objects, which can greatly speed up the search process. CTXSYS.CTXXPATH
index and ora:contains()function leverage the full text search functionality within XPath-based queries and

enhance the searching capability of EXISTSNODE().

Oracle Text, although it supports only limited XML features and XPath syntax, has a powerful text-analysis and
linguistic searching capability for an XML document management system. These features include the use of a
thesaurus, the use of custom lexes, and the use of word stems and wildcards on indexes.

After reading this chapter, you should have a better understanding of Oracle Text and XPath-based queries, which
you can use to search XML documents. The next step is to explore XPath functionality and the rich full text search
feature in Oracle Text on your own to make your searches more accurate and intelligent.

[« rreviovs [ecr s |

[rrevious e]
Chapter 12: Managing the Oracle XML Database

This chapter covers Oracle XML Database 10g management topics, beginning with looking at the components that
are installed. Then, it explores how to configure the Oracle XML Database (Oracle XML DB) to ensure functionality
for XML applications. Finally, it shows configurations for user privileges and permissions to secure XML data and
operations in the Oracle database.

Installed Oracle XML DB Components

After installing Oracle XML Database 10g, the XDB and ANONYMOUS users and an XDBADMIN role are created.
The XDB user is created to maintain the PL/SQL packages, datatypes, and system object registries for Oracle XML
DB. The ANONYMOUS user is created to allow for unauthenticated access of the Oracle XML DB Repository
through the built-in HTTP server in the Oracle database. The XDBADMIN role is granted to all the DBA users by
default so that DBA users can perform Oracle XML DB administration operations, such as registering global XML
schemas.

Note The ANONYMOUS user is created with the account LOCKED. Unless you need unauthenticated access
to the Oracle XML DB Repository, do not unlock the ANONYMOUS user; doing so will create a security
hole.

Table 12-1 lists the Oracle XML DB directory tables that are created to manage registered XML schemas, XMLType
tables, and views. These tables can be viewed from SQL*Plus or Oracle Enterprise Manager.

Table 12-1: Oracle XML DB Dictionary Tables

Directory Name
DBA_XML_SCHEMAS
USER_XML_SCHEMAS

ALL_XML_SCHEMAS

DBA_XML_TABLES
USER_XML_TABLES
ALL_XML_TABLES

DBA XML_TAB_COLS
USER_XML_TAB_COLS

ALL_XML_TAB_COLS

DBA_XML_VIEWS
USER_XML_VIEWS
ALL_XML_VIEWS
DBA_XML_VIEW_COLS
USER_XML_VIEW_COLS

ALL_XML_VIEW_COLS

Description
All registered XML schemas in the Oracle XML DB

All registered XML schemas owned by the current
user

All registered XML schemas usable by the current
user

All XMLType tables in the Oracle XML DB

All XMLType tables owned by the current user

All XMLType tables usable by the current user

All XMLType table columns in the Oracle XML DB

All XMLType table columns in tables owned by the
current user

All XMLType table columns in tables usable by the
current user

All XMLType views in the Oracle XML DB

All XMLType views owned by the current user

All XMLType views usable by the current user

All XMLType view columns in the Oracle XML DB

All XMLType view columns in views owned by the
current user

All XMLType view columns in views usable by the
current user

All Oracle XML DB PL/SQL packages and the new XML data types, including XMLType and Oracle XML DB URI
types, are installed with Oracle XML DB. Table 12-2 lists major PL/SQL packages, XML datatypes and their function
descriptions. All the definition files are stored in the ORACLE_HOME/rdbms/ADMINdirectory.

Table 12-2: PL/SQL Package Specifications and Functionality
Package Name Definition File Functionality

XMLType dbmsxmit.sql New XML data types
XMLSequenceType
XMLGenFormatType

UriType dbmsuri.sql Oracle XML DB URI datatypes
DBUriType

FTPUriType

XDBUriType

HTTPUriType

UriFactory

DBMS_XMLGEN dbmsxml.sql PL/SQL packages generating

DBMS_XMLSTORE XML from SQL queries and
storing XML into relational
tables via a canonical mapping

DBMS_XMLDOM dbmsxmid.sql PL/SQL DOM XML parsing API

DBMS_XMLPARSER dbmsxmip.sql PL/SQL XML parser interface
with support of XMLType

DBMS_XSLPROCESSOR dbmsxsl.sql PL/SQL XSL processor with

support for XPath XML data
extraction from DOM

DBMS XMLSCHEMA dbmsxsch.sql PL/SQL XML Schema support

DBMS_XDB dbmsxdb.sql PL/SQL APIs to access and
manage resource and data in
Oracle XML DB Repository

DBMS_XDBZ dbmsxdbz.sql XML DB security support

DBMS_XDBT dbmsxdbt.sql PL/SQL package to set up an
Oracle Text ConText index on
the Oracle XML DB Repository
hierarchy, create default
preferences, and set up
automatic synchronization of
the CONTEXT index

Note The corresponding PL/SQL package implementations are in the files with names starting with prvt
followed by the letters after dbmsin the name of the definition file. For example, the package body of
DBMS__ XDBT is in the prvtxdbt.sqlfile.

If you need to reinstall Oracle XML DB, you can go to the $ORACLE_HOME/rdbms/admindirectory on UNIX and
the%ORACLE_HOME%/rdbms/admindirectory on Windows, connect to the Oracle database as SYS user, and
follow these steps:

1. Loginto a SQL*Plus session and connect as the SYS user with SYSDBA privileges:
> sql pl us "SYS/ <sys_passwor d> as SYSDBA'

2. Runcatnogm.sql:

SQL> @atnogm

This step drops the XDB user, and all information in the Oracle XML DB Repository will be lost as will all
information in the schema-based XMLType tables and columns.

3. Shut down and restart the database:

SQL> shutdown i mredi at e;
SQ@> startup

4. Runcatgm.sqlscript and specify the password (such as XDBPW), the default tablespace (such as XDB),

and the temporary tablespace (TEMP) for the XDB user:
SQL> @atqm XDBPW XDB TEMP

5. Runcatxdbj.sqlto install the XML DB Java packages:
SQL> @at xdbj

Team LiB m MEXT k

[« revious fnexr]
Configuring the Oracle XML DB

To configure the Oracle XML DB, you can update the xdbconfig.xmlfile using the DOM PL/SQL APIs and
DBMS_XDB package or the graphical interface provided in Oracle Enterprise Manager (OEM). The OEM allows you
to insert, remove, or update the content of the XML elements in xdbconfig.xml.In this section, we discuss the
PL/SQL operations.

Understanding xdbconfig.xml

Thexdbconfig.xmlfile is an XML file that is stored as a resource in the Oracle XML DB Repository. It conforms to
the XML schema defined in /sys/schemas/PUBLIC/xmIns.oracle.com/xdb/ xdbconfig.xsd in the Oracle XML DB
Repository File. It has the following data structure:

<xdbconfi g>

<sysconfig> ... </sysconfig>
<userconfig> ... </userconfig>
</xdbconfig>

The top-level <xdbconfig>tag contains two sections:
m <sysconfig>Lists all the system-specific setups and the built-in parameters.
m <userconfig>Lists all parameters that allow users to customize the setups.

The <sysconfig>section contains the following content:
<sysconfig>
General paraneters
<prot ocol config> ... </protocol config>
</sysconfig>

It stores the general parameters that apply to the Oracle XML DB; for example, the maximum age for an access
control list (ACL), whether Oracle XML DB should be case sensitive, and so on. In <sysconfig>,the protocol
parameters are grouped inside the <protocolconfig>tag, which has the following data structure:

<pr otocol confi g>

<common> ... </common>
<httpconfig> ... </httpconfig>
<ftpconfig> ... </ftpconfig>

</protocol confi g>

The <common>element stores the parameters that apply to all protocols, such as MIME type information. The
HTTP- and FTP-specific parameters are stored under the sections <httpconfig>and <ftpconfig>,respectively.
The <httpconfig>section contains the <webappconfig>element for web-based application configurations,
including the icon name and display name for the applications, and a list of servlets in Oracle XML DB.

Configuring xdbconfig.xml

In SQL*Plus, you can use DBMS_XMLDB.CFG_GET() to retrieve the current content of xdbconfig.xmlas follows:

VAR out Q.OB
SET AUTOPR NT ON

BEG N

;out := DBMS _XDB. CFG GET().GETCLOBVAL();
END;

Note To be able to see the content, you need to run SET LONG 100000 to increase the size of the display
buffer for SQL*Plus.

The DBMS_XDB.CFG_GET() function returns a copy of the xdbconfig.xmlconfiguration as an XMLType and it
automatically commits after each execution:

DBMS_XDB. CFG GET() RETURN SYS. XMLTYPE

If you have many parameters to update in the xdbconfig.xmlfile, you can use the DBMS_ XDB.CFG_UPDATE()
function. It replaces the content of the xdbconfig.xmlfile with the content in the input XMLType:

DBMS_XDB. CFG_UPDATE(newconfig SYS. XMLTYPE)

After the configuration parameters are updated, you need to call the DBMS_XDB.CFG_ REFRESH)() function to
make sure the Oracle XML DB picks up the new updated configuration:

DBMS_XDB. CFG_REFRESH() ;

For example, if you need to configure the port numbers for Oracle XML DB HTTP and FTP servers to use other than
the default values (HTTP: 8080, FTP: 2100), you can follow these steps:

1. Loginto a SQL*Plus session and connect as the XDB user (assuming the password for XDB user is
xdbpw):
> sql pl us xdb/ xdbpw

2. Call DBMS_XDB.CFG_UPDATE() to update the HTTP port:

DECLARE
config XM.Type;
BEG N
config := DBMS_XDB. CFG_CGET();
SELECT UPDATEXML(confi g,
"/ xdbconfi g/ sysconfig/ protocol config/httpconfig/http-port/text()",
8081,
"/ xdbconfi g/ sysconfig/ prot ocol config/ftpconfig/ftp-port/text()',
2121) into config
FROM DUAL;
DBMS_XDB. CFG_UPDATE(confi g) ;
END;

3. Cal DBMS_XDB.CFG_REFRESH)() to ensure the Oracle XML DB picks up the new settings:
SQL> EXEC DBMS_XDB. OFG_REFRESH() ;

4. To check the HTTP and FTP port nhumbers, you can use the following SQL query:

SELECT

EXTRACTVALUE(DBM5_XDB. CFG_GET(),

"/ xdbconfi g/ sysconfig/ prot ocol config/ httpconfig/ http-port/text()")
AS httpport,
EXTRACTVALUE(DBMS_XDB. CFG_GET() ,
" I xdbconfig/ sysconfi g/ protocol config/ftpconfig/ftp-port/text()')
AS ftpport
FROM dual ;

Normally, you just need to update the content in the configuration file. However, sometimes you need to insert a new
element into this file. For example, if you want the Oracle XML DB Repository to properly handle Scalar Vector
Graphics (SVG) files, you need to add a new MIME entry in xdbconfig.xml,as follows:

<mi me- mappi ng
xmns="http://xm ns. oracl e. com xdb/ xdbconfi g. xsd" >

<ext ensi on>svg</ ext ensi on>
<m me-type>i mage/ svg+xm </ m ne-type>
</ m me- mappi ng>

Since the current UPDATEXML() function does not append new XML child elements, you need to update the
content of <mime-mappings>,which includes all the MIME mapping definitions. In such cases, using the DOM API
in PL/SQL provides efficient XML updates:

CREATE OR REPLACE PROCEDURE AddNewH erent (p_xpat h | N VARCHARZ,
p_content | N VARCHARZ,
p_nanmespace | N VARCHAR2) AS
v_config XM.Type;
v_m nmemap XM.Type;
v_doc DBMS_XM.DOM DOMDocurent ;

v_doc_el em dbns_xm dom DQVEI enent ;
v_xsl| DBMS_XSLPROCESSOR. Processor ;
v_subdoc dbnms_xm dom DOVDocunent ;
v_subdoc_el em dbns_xnt dom DOMEl enent ;
v_node dbns_xm dom DOVNode;
v_i npnode dbnms_xm dom DOWNode;
BEG N
v_m memap ;= XM.Type.createXM.(p_content);
v_config := DBVS_XDB.CFG GET();
v_doc : = DBMS_XM.DOM newDOMDocumrent (v_confi g);
v_doc_el em: = DBM5_XM.DOM get Docunent El ement (v_doc);
v_node : = DBMS_XSLPROCESSOR. sel ect Si ngl eNode(DBMS_XMLDCM makeNode(v_doc) ,
p_xpath, p_namespace);
v_subdoc :=DBM5_XM.DOM newDOMDocunment (v_m nmenap) ;
v_subdoc_el em : = DBMS_XM.DOM get Docurrent El enent (v_subdoc) ;
v_i npnode : = DBMS_XM.DOM i nport Node(v_doc,
DBMS_XM_DOM nakeNode(v_subdoc_el em), true);
v_node : = DBMS_XM.DOM appendChi I d(v_node, v_i npnode);
DBVS_XDB. CFG_UPDATE(v_confi g);
END;
/

Using this procedure, we can add a new MIME mapping for SVG files:

BEG N
AddNewEl erent (
"/ xdbconfig/ sysconfi g/ protocol confi g/ common/extension- mappi ngs/
m me- mappings', '<m me-mapping xm ns="http://xmns.oracl e. com xdb/xdbconfig. xsd">
<ext ensi on>svgj i nyu</ext ensi on>
<m me- t ype>i mage/ svg+xm </ mi ne-t ype></ m me-mappi ng>',
"xm ns="http://xmns.oracl e. conf xdb/ xdbconfig. xsd"");
END;
/

[« rreviovs [nexr s |

[« Freviovs [nexrs]

Security Management

In Oracle XML Database 109, security should be set up to protect against unauthorized access of data and any XML
processes that could affect database system operations.

Protecting Data in the Oracle XML DB Repository

The security for the Oracle XML DB resources is based on an ACL, which is a standard security mechanism used in
Java, Windows NT, and other systems. The ACL maintains a list of objectlevel restrictions on database users or
roles to access the resources in the Oracle XML DB Repository hierarchy.

Before a user performs an operation or method on a resource, a check of privileges for the user on the resource
takes place. The set of privileges checked depends on the operation or method performed. For example, to update
the Oracle XML DB configurations, READ and WRITE privileges are needed for the xdbconfig.xmlresource.

Data access is controlled by the ACL document that specifies the database users, roles, and groups who are able to
access certain resources. The default ACL includes the following:

m all_all_acl.xmlGrants all privileges to all users
m all_owner_acl.xmlGrants all privileges to owner/creator user
m ro_all_acl.xmlGrants read privileges to all users

The DBMS_XDBZ PL/SQL package provides the APIs to check and update the ACL in the Oracle XML DB
Repository. The following example shows how you can create a user group and set up the ACL for the group to
access the Oracle XML DB Repository. The access privilege for each principal, who can be a user or a role, is
stored in access control entries (ACESs) in the ACL.:

CREATE USER USER1 | DENTI FI ED BY USERL,;
GRANT CONNECT, RESOURCE TO USERI;

CREATE USER USER2 | DENTIFI ED BY USERZ2;
GRANT CONNECT, RESOURCE TO USERZ;

CREATE ROQLE DEMOGROUP NOT | DENTI FI ED;
GRANT CONNECT, RESOURCE to DEMOGROUP,

GRANT DEMOGROUP t o USERL;
GRANT DEMOGROWP to USERZ?;

By default, all file and directory resources created by a user are accessible to all database users. To limit these
users to the group, DEMOGROUP, you first need to create a new ACL resource file and store it in the Oracle XML
DB Repository as the file /sys/acls/all_demogroup_ acl.xml. The file looks like the following:

<acl description="Private: All privileges to OMER only"
xmns="http://xmns. oracle.com xdb/ acl . xsd"
xm ns: dav="DAV. "
xm ns:xsi="http://ww w3.org/2001/ XM.Schema-i nst ance"
Xsi : schemaLocati on="http://xm ns. oracl e.conf xdb/ acl . xsd
http://xm ns. oracl e.com xdb/ acl . xsd" >
<ace>
<pri nci pal >DEMOGROUP</ pri nci pal >
<gr ant >t r ue</gr ant >
<privilege>
<all/>
</privil ege>
</ ace>
</acl >

The preceding ACL specifies grants of all privileges to the owner of the document using the ACE elements. Each
ACE element specifies access privileges for a given principal using values set for the elements described in Table

12-3.

Table 12-3: Access Control Entry Definitions

Element Description
<principal> Specifies the principal (user or group).
<grant> A Boolean value that specifies whether the

principal has been granted access to the resource.
A value of true specifies that the access is
granted. A value of false specifies that access is
denied.

<privilege> Specifies the privileges granted to the principal.

To have some resources to work with, you can connect as USER1 and create a folder in the Oracle XML DB
Repository for User1.:

DECLARE

retval BOCLEAN

BEG N

retval := DBMS XDB.createfol der('/public/folderl');

retval := DBMS_XDB. createResource('/public/folderl/docl. xm"', XM
Type(' <xm 1/>"));

END; /

To confirm that Userl and User2 can currently view this resource, either use your FTP client to see the
/public/folderldirectory or execute the following query while connected as each user:

SELECT count (*) from RESOURCE_M EW

Now you can restrict access to these resources by changing the ACL file to all_all_acl.xmlby executing the
following command:
BEG N
DBM5_XDB. Set ACL("' /public/fol derl',
"/sys/acls/all _all _acl.xm");
CaOW T;
END; /

Once again check for resource access and count and you will see that User2 has fewer resources and no access to
/public/folderl.If role/group ownership is in effect, both users could have the same number of accessible
resources. You can do this by switching the ACL file again to all_demogroup_acl.xmlby executing the following
connected as SYS:

BEGI N

DBMS_XDB. Set ACL(' / publ i c/folderl',

'/sys/ acls/all _denogroup_acl.xm"');

COWM T;

END,;
/

Using the same query, USER1 and USER2 now have the same number of accessible resources:
SELECT count (*) from RESOURCE_M EW

Each DBMS_XDB security management method takes a path (resource_path, abspath, or acl_path) as a parameter.
You can then use any or all of the following DBMS_XDB methods to perform security management tasks:

m getAcIDocument()
m ACLCheckPrivileges()
m checkPrivileges()

m getPrivileges()

m changePrivileges()
m setACL()

Oracle XML DB ACLs are cached for very fast evaluation. When a transaction that modifies an ACL is committed,
the modified ACL is picked up after the time-out specified in the Oracle XML DB configuration file. The XPath for this
configuration parameter is /xdbconfig/sysconfig/ acl-max-age.

Securing DBUri Operations

DBUri servlet security is handled by Oracle Database 10g by using roles. When users log in to the servlet, they use
their database username and password. The servlet will check to make sure the user logging in belongs to one of
the roles specified in the configuration file. The roles that are allowed to access the servlet are specified in the
security-role-reftag. By default, the servlet is available to the special role authenticatedUser. Any user with a valid
database username and password belongs to this role and thus can use the servlet.

The parameter updated in the following example restricting the list of authenticated users can be changed to restrict
access to any role(s) in the database. To change from the default authenticated-user role to a role that you have
created, for example, servlet-users,run the following connected as a user with XDBADMIN role:

DECLARE
doc XM.Type;
doc2 XM .Type,;
doc3 XML.Type;
BEG N
doc : = dbns_xdb. cfg_get();
sel ect updateXM.(doc, '/xdbconfig/sysconfig/protocol config/httpconfig/webappconfig
[servletconfig/servliet-list/servlet[servlet-name="DBUriServlet"]
/security-role-ref/role-name/text()', 'servlet-users') into doc2
from dual ;
sel ect updat eXM_(doc2, '/xdbconfi g/ sysconfi g/ protocol confi g/ httpconfi g/ webappconfig
/servletconfig/servlet-list/servlet[servlet-name="DBUriServlet"]

/security-role-ref/role-link/text()', 'servliet-users') into doc3
from dual ;

DBMS_XDB. CFG_UPDATE(doc3) ;
COW T,

END;

/
[« rreviovs [nexr s |

[« revious Dot |
Summary
In this chapter, we discussed how you can manage the Oracle XML DB to ensure the proper functionality and

security protection for stored resources. In the samples, we also provided the utility package that simplifies update
operations to the xdbconfig.xmlfile to manage these resources.

Team LiB m MEXT k

Part Ill: Oracle XML for Java Developers

Chapter List

Chapter 13: Getting Started with Oracle XML and Java

Chapter 14: Building an XML-Powered Web Site

Chapter 15: Creating a Portal Site with XML and Web Services

Chapter 16: Developing an XML Gateway Application with SOAP and AQ

Chapter 17: Developing XML-Based Reusable Components

[rrevious e]
Chapter 13: Getting Started with Oracle XML and Java

The previous chapters introduced the overall XML functionality provided by the Oracle XDK and Oracle Database
10g. Over the next several chapters, you will learn how to actually develop applications in Java with these products
by exploring sample applications derived from actual Oracle customer use cases. To get the greatest benefit from
the following chapters, you need to be familiar with the Oracle XDK Java libraries, the JDK environment (both within
and without the database), and how to use the XDK with Oracle JDeveloper 10g. This chapter provides a general
overview of these topics. This chapter supplements the Getting_Started_Java.html documentation provided with
the Oracle XDK within the $XDK_HOME\xdk\doc\java directory either in the OTN distribution or in the Oracle XML
Application Developer's Guide included with the Oracle Database 10g release.

The Oracle XDK Java Libraries

Although you learned about the Oracle XDK functionality in the previous chapters, you may not know where all the
XDK components are stored, because the XDK is packaged within a set of JAR files that combine functions. The
XDK components are delivered in the \lib directory of the OTN distribution and the ORACLE_HOME\lib directory.
There is an additional JAR called orail8n.jar in the corresponding ORACLE_HOME)jlib directories. The following is
a functional description of each.

xmlparserv2.jar

Thexmlparserv2.jar is much more than its name implies, though it started life in Oracle8i as simply the DOM and
SAXinterfaces. In Oracle XDK 10g, this library contains those classes as well as the XML Schema processor
classes, XSLT Processor classes, XML compression classes, JAXP classes, W3C interfaces for DOM and SAX,
and utility functionality such as the XMLSAXSerializer and asynchronous DOM Builder.

xml.jar

Thexml.jar is a new library for Oracle XDK 10g and is an attempt to consolidate a number of JARs. It includes all
the classes from oraclexsql.jar,xsqlserializers.jar, xmlcomp.jar, xmlcompZ2.jar, and transx.zip,as well as the
new JAXB and Pipeline Processor classes. This greatly simplifies your CLASSPATH. You might wonder why
xmlparserv2.jar is not included as well. The answer is that this JAR has been around since the start and has so
many products depending on it that it would be too great a risk to existing code to collapse it.

xschema.jar

Although the XML Schema classes are already contained in the xmlparserv2.jar, the xschema.jaris still included
for backward compatibility reasons. In previous versions, these classes have resided in this JAR; however, it will
eventually disappear. Therefore, you should ignore this JAR for all new development.

oraclexsql.jar and xsqlserializers.jar

Theoraclexsqgl.jar contains most of the XSQL Servlet classes needed to deploy XSQL pages. If, however, you
want to create serialized output, such as PDFs, you need the xsqlserializers.jar because it contains these
serializer classes. Both of these JARs have been superceded by the xml.jarand are only included for backward
compatibility. You should not continue to use them in new development.

xmlcomp.jar, xmlcomp2.jar, xmldemo.jar, and jdev-rt.zip

Thexmlcomp.jarcontains the XML JavaBeans that do not depend on the database, while the xmlcomp2.jar
contains the JavaBeans that do, and thus depends on xdb.jar, which is the library that includes the Java classes
that support the XML DB functionality. These JARs are included only for backward compatibility, because their
classes are now included in xml.jar.

Thexmlcomp.jar contains the DOMBuilder, XSLTransformer, DBAccess, XSDValidator, and XMLDiffer Beans,

while the xmlcomp2.jarcontains only the XMLDBAccess and XMLCompress Beans. You will not find future XML
JavaBeans in these JARS, so you should not use them for new development. You also won't find the visual Beans
that were in previous releases. The XMLTreeView, XMLTransformPanel, XMLSourceView, and DBViewer Beans are
now considered demos and are included in the xmldemo.jar.Thejdev-rt.zipis used when working with the demos

within the JDeveloper IDE.

xsulz2.jar

Thexsul2.jarcontains the classes that implement the XML SQL Utility's Java functionality. These classes also
have a dependency on the xdb.jarfor XMLType access.

classgen.jar

Theclassgen jar contains the Class Generator for Java classes. In Oracle XDK 10g, only the run-time classes are
included, as the JAXB Class Generator included in xml.jar has superceded their functionality. Only Oracle9i
applications that cannot be rewritten should continue to use this JAR.

xdb.jar

Thexdb.jar contains the classes that are needed by xml.jarandxmlcomz2.jarto access XMLTypes. It also
includes the SPI and XDBServlet classes to access the XML DB Repository, and the XMLType DOM classes for
direct manipulation of the XMLType DOM tree. Note that this is not as complete a DOM implementation as in
xmlparserv?2.jarand thus will not be covered in this book.

xmlmesg.jar

Thexmlmesg.jaris only necessary for development that requires non-U.S. English error messages that are
available by default in all the other JARs. This JAR contains 27 additional translations and can simply be added to
your CLASSPATH. The selected language will be based on your Java Locale setting.

transx.zip

Thetransx.zip archive contains the TransX Utility classes. This archive has been supplanted by xml.jar and is
retained only for backward compatibility. New development should use the classes from xml.jar.

orail8n.jar

Theorail8n.jarcontains the Oracle National Language Supported (NLS) character set encodings. Distinct from the
previous JARS, it resides in the XDK_HOME/xdk/jlib directory for OTN distributions and ORACLE_HOMFE/jlib for
Oracle Database 10g. You will need it to support the normalization functions in XPath and on XSLT output for the
proper collations.

classes12.jar and ojdbcl4.jar

Theclassesl2.jar and ojdbc14.jar are the Oracle JDBC drivers for Java 1.2/1.3 and 1.4, respectively. These JARs
also depend upon orail8n.jarfor their character set support when additional character sets beyond UTF-8,
ISO8859-1, and JA16SJIS are required. These JARs are not part of the XDK distribution on OTN but are in the
ORACLE_HOME)\jdbc\lib directory of the database.

Figure 13-1 illustrates the dependencies between these XDK classes so that you can understand which ones are
required when in your CLASSPATH.

[Transx utility [xSQL serviet

LIFarsx .."iFIl Lrad ||'1;~|:|| jar, x\|:||~.wi.|=i.r|~|~. i.l!:
XML SOL utility | web server
{xsul2 jar) that
T - 1 supporis

[Class generator| XML schema processor] JDBC driver Java

| lelasspen.jar) | (sscherma. jark | (ajdbel 4.jar) | Serviets

| XML parser/XSL processar MLS

| tmiparserv2. jar, xmimesg.jar) lorail8n.jar)

[1DK 1.2

Figure 13-1: XDK library dependencies

[« rreviovs [ecr s |

[« Fprevious [nexr s |
The JDK Environment

The Oracle XDK supports all currently supported JDK and JRE versions at the time of this writihg— JDK 1.2, 1.3,
and 1.4 and their associated JREs. Oracle 10g products, including the database, application server, and XDK, no
longer support JDK 1.1 because of Sun’s de-support of that version. This can also be said for the JDBC drivers, as
the 1.1 version is no longer supplied. The Oracle JServer JVM is its own special implementation and has unique
requirements that were discussed in Chapter 8.

Setting Up the JDK Environment

There is nothing special about setting up your Java environment for developing with the Oracle XDK and Oracle
Database 10g. You should note that when installing an Oracle Home, no changes are made to your CLASSPATH
settings even though significant Java functionality is being used. This is because Oracle Java applications are
invoked with their required CLASSPATHSs on the command line or in a script.

While the Oracle database requires you to manually set the CLASSPATH, the OTN XDK distribution supplies an
env.batfileon Windows and an env.csh file on UNIX to automate the setup of your environment and serve as a
template for customizations. These files need certain variables set in order to create a working environment. Tables
13-1 and 13-2 provide the definitions on Windows and UNIX, respectively, for the various JDK versions.

Table 13-1: Windows XDK Environment Variables for env.bat
Variable Name Values Customize

%INSTALL_ROOT% | Installation root of XDK, which is the directory we refertoas | NO
%XDK_HOME%.

%JAVA_HOME% Directory where the Java SDK, Standard Edition is YES
installed.
Path linked to the Java SDK needs to be modified.
%CLASSPATHJI% For 1.2 and 1.3: YES

CLASSPATHJ=%ORACLE_HOME%)\dbc\lib\classes12.jar;
%ORACLE_HOME%\jdbc\lib\orail8n.jar

For 1.2 and 1.3:
CLASSPATHI=%ORACLE_HOME%)\dbc\lib\ojdbc14 jar;
%ORACLE_HOME%\jdbc\lib\orail8n.jar

%PATH% PATH=%JAVA_HOME%\bin;%ORACLE_HOME%\bin; NO
%PATH%;%INSTALL_ROOT%\bin

%CLASSPATH% %CLASSPATHJI%;%INSTALL_ROOT%\lib\xmlparserv2.jar; | NO
%INSTALL_ROOT%\lib\xsu12.jar;
%INSTALL_ROOT%\lib\xml.jar;

Table 13-2: UNIX XDK Environment Variables for env.csh

Variable Name Values Customize

$INSTALL_ROOT Installation root of XDK, which is the directory we refer to NO
as $XDK_HOME.

$JAVA_HOME Directory where the Java SDK, Standard Edition is YES
installed.

Path linked to the Java SDK needs to be modified.

$CLASSPATHJ For 1.2 and 1.3: YES
CLASSPATHJI=${ORACLE_HOME}\jdbc\lib\classes12 jar;
${ORACLE_HOME}dbc\lib\orail8n.jar
For 1.2 and 1.3:
CLASSPATHJ=${ORACLE_HOME}jdbc\lib\ojdbc14.jar;
${ORACLE_HOME}\jdbc\lib\orail8n.jar

S$PATH PATH=$JAVA_HOME\bin; NO
$PATH;${INSTALL ROOT\bin

$CLASSPATH BCLASSPATHJ;${INSTALL_ROOT}Nib\xmlparserv2.jar; NO
$H{INSTALL_ROOTHNIiib\xsul2.jar;
${INSTALL_ROOTHNib\xml.jar;

$LD_LIBRARY_PATH | For OCI JDBC connections: NO
${ORACLE_HOME}Hib:${LD__
LIBRARY_PATH}

Usingenv.bat as an example, if you have %JAVA_HOME% and %ORACLE_HOME% set up in your environment
and you use JDK 1.4, which is suggested for use with Oracle XDK 10g, you can simply go to the
%XDK_HOME%/bin directory and run env.bat. The batch file will set the PATH environment variable so that you
can run the command-line executables provided along with the XDK. Additionally, the batch file sets the Java
CLASSPATH variable, which includes ojdbc14.jar,orail8n.jar,xmlparserv2.jar,xml.jar,xmlmesqg.jar,xsul?2.jar,
andoraclexsql jar.

[« rreviovs [ecr s |

[« revious fnexr]
Using the XDK with Oracle JDeveloper

Oracle JDeveloper has added more XML functionality with each release. At the time of this writing, Oracle
JDeveloper 10g has just been released, so this section is current to that version. Every version has included the
Oracle XDK’s Java libraries, and each version has seen them better integrated. Regardless of the version you are
using, the content in this section will be applicable unless specifically stated otherwise.

Setting Up an XDK Environment

Each Java project in JDeveloper has a set of properties that can be accessed by right-clicking the project filename in
the Navigatorwindow and selecting Project Properties. Project files are identified by a .jpr extension. Select
Libraries to display the dialog box shown in Figure 13-2.

T

Dol o Pk
Erd
1 =
Spr—— | T =
Dioprcorcn
TEE Jwen Surcn Pt
Mioelers T
1 Diatabonse ST LI
Technciogy Scope | HTML Floot Disnctcey:
= Congasions |:'."{‘,"‘,‘:'\.‘,'4'I';'..--.. B
= It X =
Paka I Sy Sanite Pals b gk Pt Codenti
Coneileinck
Conrgder
Diebuap
Iireades
Libnarmn
Frofier
Tluras
Help | oK Carcal

Figure 13-2: Selecting your project properties’ libraries

Since Oracle JDeveloper includes the Oracle XDK’s Java libraries, you already have entries for them. Should you
wish to add newer versions, you can easily add them by clicking NeworEditand defining a different library name
from existing ones. While you will not have the path to the source code, you can download the Javadocs for the
newer libraries from OTN and provide their path for easy use within the IDE.

The other use of the Libraries dialog box is to indicate what libraries are missing when compiling or deploying a
project. This is especially true for imported projects. Missing libraries will be indicated in red and you can resolve
them simply by either adding a new one or editing it so that it refers to the local library.

Setting Up a Database Connection

JDeveloper has the functionality to connect to a database for run-time access; however, this connection must be
configured globally before you can use it. Access to this configuration is not intuitive, so the following are the
instructions. However, before you start you should have a database instance running and the user ID, password,
and optionally the role you want to use to connect.

Types of JDBC Drivers

One additional important preparation step is to ensure that JDeveloper knows about the Oracle Database 10g JDBC
drivers. This is important because, starting in this release, the naming convention has changed. JDeveloper comes
configured for version 9 JDBC drivers, which, while they will work against Oracle Database 10g, will have poorer
performance and will not have support for all the features. The following sections describe the JDBC drivers included
in your ORACLE_HOME/jdbc/lib directory along with their dependencies and purpose.

JDBC Thin Driver 10.1.0.2.0

This is a 100 percent Java driver designed for client applications, midtier servers, and applets. It is contained within
classesl2.jar for use with JDK 1.2 and 1.3 and contained within ojdbc 14.jarfor use with 1.4. If you require
complete NLS support for objects and collection types, you also need orail8n.jar. This driver will not support
XMLType on the client. The connection string is

Connecti on conn = Driver Manager.get Connecti on(
"jdbc:oracl e: thin: @dat abase>",
“my_user", "my_password");

where <database> is either a string of the form host: port:sid, a SQL*NET name-value pair, or a service name.
JDBC OCI Driver 10.1.0.2.0

This is the “thick” Java driver that utilizes OCI to provide client-side full datatype support, including XMLType. Itis
contained within classes12.jar for use with JDK 1.2 and 1.3 and contained within ojdbc14.jarfor use with 1.4. If
you require complete NLS support for objects and collection types, you also need orail8n.jar. On Windows, you
alsoneed to have ORACLE HOMEN\bin in your PATH to locate the needed C libraries. The connection string is

Connection conn = Driver Manager.get Connect i on(
"jdbc:oracl e: oci : @dat abase>",
"my_user", "my_password");

where <database> is either an entry in tnsnames.ora or a SQL*NET name-value pair.
JDBC Server-Side Internal Driver 10.1.0.2.0

This is the internal JDBC driver that runs in the OJVM in the database. It is also known as the kprb JDBC driver. All
classes and libraries are already loaded for it to work supporting all data types. The connection string is

Connection conn = Driver Manager.get Connecti on(
"jdbc:oracl e: kprb:");

Note that the trailing “;” is necessary.
Creating a Database Connection

To create a database connection, first select File | New to open the New Gallerydialog box. Expand the General
category and select Connections, as shown in Figure 13-3. In the list of items on the right side, double-click
Database Connection. This starts the Database Connection Wizard. The same wizard can also be triggered from
the Connection Navigator, by right-clicking the Database Connection node and selecting the New Database
Connection shortcut menu.

Fiber By [l Technologe: =
Gerenal T Al g §ar Corvecraon
Wi ek apacen

Al

- D ot ey Civvoaiaiey
Craplonmrand [1easapizn ¥ Duacle S0H Convuckon

Erphonmant Proties B0AP Server Corraton

[T % DCH Regtry Cormctin
Prolacha 1 WD Correction
e Flei
ek Sereed
bl

= Busirwnis T

= Cherit Tew

= Dalabace Taw

& ks Time e

Lananchay e Crmate [t st Conmeschion wanws, mshich pou cossts s conncion i &
data wabun b e ot beowvsing e dalabase. scopisng Be
b b o sohetd gl el S dalaeaes sock

T oo of gheilpyy eeeabliad

| o] oo

Figure 13-3: JDeveloper database connection selection

Select OK on the first wizard page to go to Step 1, which allows you to name the connection (for example,
DBConnection10g). At this point, the Connection Type drop-down list box enables you to select the type of JDBC
driver you want to use. To use either the thin or thick JDBC driver, select Oracle (JDBC), which takes you to the
Authenticationstep to enter your login information (e.g., SYS, ORACLE, SYSDBA). Check Deploy Password to
avoid the password prompt each time you connect. Click Next to go to the Connectionstep, where you select either
the thin or oci8 (thick) driver along with the Hostname, JDBC Port, and SID(e.g., localhost, 1521, ORCL).

Select Next to go to the final Teststep, which lets you test the JDBC connection. If your setup is correct, you will
see “Success!” displayed; otherwise, you will see the error you need to correct. Even if you plan to use the thick
driver to get full XMLType support, if you get an error, we suggest that you try the thin connection because that will
confirm that your database parameters and strings are correct.

When you create connections using Oracle’s JDBC/OCI drivers, be aware of the following platform-specific
requirements:

= You must have the required native libraries (DLL files on Windows, and SO/SL files on UNIX). With the Oracle
thick driver (JDBC/OCI), the version of the JDBC driver must match the version of the Oracle Home. For
example, the Oracle JDBC Driver version 10.1.0 requires that the Oracle Home contain version 10.1.0 of the
ocijdbc10.dll, as well as the Oracle Network software and supporting libraries, message files, encodings, etc.,
within an Oracle Home. If you are connecting to a local database that is a different version from the JDBC driver
you are using, then you must install the Oracle client software into a separate Oracle Home, and connect via the
Oracle Net Listener.

m You must place the ORACLE HOME directory in which the client-side files for the required native libraries
reside in your PATH environment variable. On Windows, you need the %ORACLE_HOME%\bin directory in
which the client-side DLL files reside in your PATH environment variable. If you have multiple Oracle Homes
installed on your machine, use the Oracle Home Switch utility to choose the correct Oracle Home. On UNIX, you
need the SORACLE_HOMEI/lib directory in which the client-side SO/SL files reside in your PATH environment
variable.

m |f your Oracle Home for the OCI driver is not the same as the Oracle Home in which JDeveloper is installed, you
must either set the ORACLE_HOME environment variable or edit /jdev/bin/jdev.conf with a line similar to the
following, replacing the path shown with the full path to your Oracle Home:

m On Windows: “AddNativeCodePath C:\ORACLE\ORA10\BIN”
= On UNIX: “AddNativeCodePath /u01/app/oracle/product/10.1.0/lib”

This command allows JDeveloper to properly update the java.library.path in which the Java VM searches for
shared libraries. Connections set up this way are available globally and are automatically available to your projects.

Creating an XDK Component Palette

Oracle XDK 10g includes a collection of XML JavaBeans that can be easily integrated into JDeveloper as an XDK
palette. You can add pages to the Component Palette to group your XDK JavaBeans components, or you can add
components to existing pages. Once you add JavaBeans to the palette, you can insert them into any file you have
open in the Ul Editor by selecting them from the Component Palette.

The XDK JavaBeans are contained in xml.jar and xmlparserv?2.jar;therefore, you need to first make sure
JDeveloper knows about these JARs. Select Tools | Manage Libraries to display a listing of User Libraries, Addin
Libraries, and System Libraries. Selectingany one will allow you to add a new library to the list by clicking New.
EnterXDK Components for Library Name and edit the Class Path to point to the location at, for example,
C:\oracle\oralO\lib\xml.jar. Leave the Source Path and Doc Path blank unless you downloaded the Javadocs from
OTN. Click OK and you are done.

To create an XDK JavaBeans Component Palette, follow these steps:
1. From the main menu, select Tools | Configure Palette to open the Configure Component Palette dialog box.

2. Click Add to open the New Palette Page dialog box.

3. Enter a page name, such as XDK JavaBeans, and click OK.You now see your new entry highlighted in the
Configure Component Palette dialog box.

4. Click Add on the Components side, and an Add JavaBeans dialog box will appear with a picklist of register
libraries.

5. Select XDK Components, and for the filter, select JavaBeans with BeanInfo Only from the Filter drop-down
list. Expanding the oracle.xml class tree displays the list shown in Figure 13-4.

Liwary: D% Comporsnts

Lt of Corrporanis
- (I cischa
= (73 smi
+ (T dbaccess
&) Sler

£ 7 io

+ ([jeb

+ () mesg

+ (1 pipelre
) sehermarabdat
v (T] haraveswe

v (T i

e

=

=1

=

Faw [T wih Bearirds by =]
Bl i)

(]

Figure 13-4: Adding a JavaBeans XDK Components list
6. You can now select the DBAccess, XSDValidator, XMLDiffer, XMLDBAccess, and XMLCompress
JavaBeans by clicking each and then clicking OK.

Note Although you can select multiple Beans by holding down the CTRL key, the associated Bean
images will not be correctly assigned.

Once you have completed these, you can add the DOMBuilder and XSLTransformer JavaBeans from
xmlparserv2.jar, giving you seven JavaBeans, as shown in Figure 13-5.

Page Iwer |41 =l
Pager Compons ..
UL Clacs 2 [
L] e 5 DV aldmdon
Busirmss Compansnt <o LIS ACcers
[l b b WL
] ¥ MMLCompesss
‘b Senvice 3, DOMEde
LML Lise Case +8 ML Teansfomme:
Sty Page Flow
e a Eirant
ity e b oo SRS LT ranaloam
it /v e scin, comdevelopen 05 et pnsorn
hipe Vol o sles CoOT BTl =
55 g | [g |]| o] e |
Heo ok | cexs |

Figure 13-5: XDK Component Palette
This palette now is available whenever you activate the Component Palette from View | Component Palette for all

Java programs. You can drag and drop its components onto Swing or AWT panels when using the Ul Designer of
JDeveloper.

[erevous Jrecrs

[« previous fnexr]
Summary

This chapter walked you through the basics of getting your Java development environment configured and set up for
either command-line development or using the Oracle JDeveloper IDE. It also introduced you to the JDK and JDBC
driver configurations and requirements that you will use in the following chapters. In those chapters, you will learn
how to build real Java XML-enabled applications covering a range of solution scenarios.

[« erevious [e |

[rrevious e]
Chapter 14: Building an XML-Powered Web Site

Throughout this book, we have presented the wide range of Oracle products that have become XML-enabled, and
we have introduced many of the XML standards. In this chapter, we will explore the development and deployment of
a real-world application that uses these standards with the Oracle XDK and the new XML features of Oracle
Database 10g. In this application, we explore the important capabilities of XSLT, the XSQL Servlet, the XML SQL
Utility, Oracle Text, and the XML data types and operators in Oracle Database 10g.

An XML-Enabled FAQ Web Site

A frequent requirement for companies that maintain a web presence is to have a support area for their products.
This area may range from simple electronic versions of their owner's manuals to a moderated discussion forum. A
popular support area feature is to have an FAQ (frequently asked questions) section for each product.

Visitors to the site will be able to see all the FAQ subject areas on the home page and can also search and select
from the most frequently viewed FAQs. Whenever the list of FAQs appears, users can see the answers as well as
find related FAQs by following the presented links. Inside each FAQ answer are links to an online glossary for
technical or special terms. This functionality will be described in detail later in the chapter.

As you no doubt have realized, the Oracle XML-enabled products and components are quite extensive and include
components in the quite disparate programming languages of C, C++, PL/SQL, and Java. However, underneath
they all provide XML functionality that is programming-language independent. This gives rise to an awkward model
for providing technical support, because many questions that are XML-based are equally applicable across all the
XDKs, yet there are many language-specific questions that only make sense in only one XDK. Therefore, providing
an Oracle XML FAQ site that can store all questions within a database and designing the schema in a way that
FAQs can be tagged as relevant for one or more of the languages as well as the XML-enabled database features is
a basic requirement for this site.

Besides simply displaying a listing of FAQs per XML component and feature, users would expect a full text search
facility. Since we plan to store the FAQs in the Oracle XML database, we can take advantage of Oracle Text
(formerly interMedia Text) search engine with its XML support. We also need a mechanism for submitting FAQs,
which can be provided by FTP access to the Oracle XML DB repository.

In most cases, the content for web sites is delivered from HTML pages stored in file systems on servers. For this
application, we will deliver as much of the content as possible from the database. This will give us maximum
manageability of the content while at the same time demonstrating most of the Oracle XML database functionality.

[« Freviovs [et |

[« Freviovs [nexrs]

Designing the Framework

This application will use the Oracle XML database as its repository for the FAQs. We will create this storage by
registering an FAQ XML schema with the database that will then create the underlying objects and indexes that will
store the XML. Additionally, we will create SQL tables to manage the categorization and glossary functionality of the
site.

Once the database schemais designed, we will set up the application using the XSQL Servlet as the back end and
an Internet browser as the front end. We will create a set of XSQL XML pages that will use the XML SQL Utility to
submit queries via JDBC and then create a set of XSL stylesheets using the XDK’s XSLT Processor to transform
the result into HTML that is returned to the browser. To support paging of the FAQs, we will create an XSQL custom
action handler in Java.

To implement the search functionality, we will use Oracle Text in the database. Since it has been enhanced with
XML support, we will be able to submit queries as either text expressions or XPaths. To extend the functionality of
term searching, we will implement a glossary that will be accessible through links in the content of FAQ answers.

[« Frevious Jinecr |

[« revious fnexr]
Creating the FAQ Database

Since this is a database-backed application, you will need to design a database schema to store the FAQs and their
metadata. Obviously, since the individual FAQs will be XML documents, there can also be an XML schema that
describes their format. As you learned in Chapter 8, you can register this XML schema, and the XML database will
create the database schema for you. On the other hand, you can start with the database schema and generate an
XML schema using the XML SQL Utility introduced in Chapter 10. In this application, you will create the FAQ storage
with an FAQ schema and create metadata tables using SQL to improve search performance and extend the
functionality of the site.

[« rreviovs [exr |

Designing the FAQ Schema

[rrevious Jrecrs

Many developers feel it is easier to design an XML schema from a sample instance XML document, whereas other
developers design the XML schema from a data-modeling perspective. In either case, you need to start by
enumerating the data types that you will need. From the FAQ site requirements, you can determine the types and

their content as set forth in Table 14-1.

Table 14-1: XML Datatypes Needed to Describe FAQ

XML TYPE Description Database Type

FAQ Complex type of entire FAQ OBJECT
document

TITLE Simple type string with VARCHAR?2
restricted length to specify an
FAQ question for one-line
display

QUESTION Mixed content to support OBJECT
keyword and code markup

ANSWER Mixed content to support OBJECT
keyword and code markup

CATEGORY String describing component VARCHAR2
type

LANGUAGE String describing language type VARCHAR?2

PARAGRAPH Mixed content of text, code, OBJECT
keywords, and links

CODE String for embedded source VARCHAR2
code

KEYWORD String for identifying glossary VARCHAR?2
terms

LINK Complex type of two strings for OBJECT
hrefs and type

SAMPLE Complex type of two strings for VARCHAR2

hrefs and type

Note that even though LANGUAGE and CATEGORY each will be a specffic list, they have not been identified as
such in the schema. While the choice to do this has the consequence of limiting the storage model, the selection
can be handled on the insert side by presenting a list of languages or categories when the FAQ is generated. It is
important not to unnecessarily constrain your storage, because doing so limits extensibility. In this case, regardless
of whether there is a finite list, the selections are stored as strings in a column and any index created would

accommodate additional strings with negligible impact.

Besides the actual FAQ content, the site maintenance would benefit from additional metadata about the FAQ, such
as the following:

With these types enumerated, you can design an XML schema that takes into account what types are needed within
other types. For example, you would like <ANSWER> to be able to contain <PARAGRAPH> <KEYWORD>, and
<CODE>elements, and you would like the metadata information, such as the status,id, and lastupdate, to be
attributes instead of child elements of <FAQ>. Taking these dependencies into account, you could produce the
following FAQ XML schema:

<?xm version="1.0" encodi ng="UTF-8"?>
<xs: schema xm ns:xdb="http://xm ns. oracle. com xdb"
xm ns:xs="http://ww. w3. or g/ 2001/ XM_Schenga"
el ement FornDef aul t =" qual i fi ed" >
<l-- Defile the CONTENT_TYPE- - >

<xs: conmpl exType name="CONTENT_TYPE" m xed="true" xdb: SQLType="CLCB"
<xs:choice m nCcurs="0" nmaxCccur s="unbounded" >
<xs: el ement name="CODE' type="xs:string"/>
<xs: el ement nanme="PARAGRAPH' nillabl e="true">
<xs: compl exType m xed="true">
<xs: choi ce m nCccurs="0" maxCccur s="unbounded">
<xs:el ement name="LINK" nillabl e="true">
<xs: conpl exType m xed="true">
<xs:attribute name="href" type="xs:string"/>
<xs:attribute name="type" type="xs:string"/>
</ xs: conpl exType>
</ xs: el emrent >
<xs:el ement name="KEYWCRD' type="xs:string"/>
<xs:el ement nanme="CODE" type="xs:string"/>
</ xs:choi ce>
</xs: conpl exType>
</ xs: el enment >
<xs:any processContents="skip"/>
</ xs:choi ce>
</xs: conpl exType>
<l -- Define FAQ El enent -->
<xs: el enent name="FAQ' xdb: nai nt ai nDOME" f al se" xdb: defaul t Tabl e="FAQ'>
<xs:conpl exType>
<Xs: sequence>
<xs:element name="TI TLE" xdb: SQLName="TI TLE' >
<xs: si npl eType>
<xs:restriction base="xs:string">
<xs: maxLengt h val ue="100"/ >
</xs:restriction>
</ xs:si npl eType>
</xs: el ement >
<xs:element name="QUESTI CN' type="CONTENT_TYPE" nill abl e="true"
xdb: SQLNanme=" QUESTI CN"/ >
<xs: el ement name="ANSVER" type="CONTENT_TYPE" xdb: SQLNanme="ANSVER"/ >
<xs: el ement name="CATEGORY" type="xs:string" xdb: SQLType="VARCHAR2"
xdb: SQLNane=" CATEGORY" / >
<xs: el ement name="LANGUACE" type="xs:string" mnOccurs="0"
xdb: SQLType="VARCHAR2" xdb: SQLNane="LANGUAGE" / >
</ xs: el enent >
</ xs: sequence>
<xs:attribute name="id" type="xs:positivelnteger" default="0001"
xdb: SQLType="NUVBER' xdb: SQLNane="|D"/>
<xs:attribute nane="|astupdate" type="xs:date" default="2003-03-11"
xdb: SQLType="DATE" xdb: SQLNane=" LASTUPDATE" / >
<xs:attribute name="status" type="xs:string" defaul t="pending"
xdb: SQLType=" VARCHAR2" xdb: SQLName=" STATUS"/ >
</ xs: conpl exType>
</ xs:el enent >
</xs: schema>

There are several points to note about this schema. First, there are attributes with the name xdb: SQLType that are
used to tell the registration process to which database type XML types should be mapped and xdb: SQLName to
specify the column or object name.

Next, note that a type called CONTENT_TYPEis defined and is used in both the definition of QUESTION and
ANSWER elements. This is a useful technique when you are using the same XML datatype for more than one
element definition. Also to add content flexibility within these types, <xs:anyprocessContents="skip" > is added.
This tells the XML schema processor in the Oracle XML DB to ignore any elements within <QUESTION> or
<ANSWER> other than the <CODE> and <PARAGRAPH> elements.

Finally, note the attribute within the FAQ element, xdb: maintainDOM="false".This is a special notation to the XML
database that specifies that it is not important for this application to have these documents stored with all white

space, comments, processing instructions, etc. preserved. This lets the XML database create only the necessary
objects and indexes to retrieve the content, thereby improving performance.

Creating a Database User

Before proceeding with the database operations, you need to create a user with the appropriate privileges to store,
guery, and search FAQs using Oracle XML DB. To create, in this case, an xdkus user, you need to use the
sys/password logon as SYSDBA and execute the following commands from SQLPIus:

CREATE USER xdkus | DENTI FI ED BY xdkus
DEFAULT TABLESPACE users
TEMPCRARY TABLESPACE t enp;

Then, to make sure this user has the necessary privileges to access the resources needed, such as the Oracle Text
index and Oracle XML DB repository, execute the following:

GRANT CONNECT, RESOURCE TO xdkus;
GRANT ct xapp TO xdkus;

Registering the FAQ Schema

Now that you have the FAQ schema, you need to register it with the XML database to create the database schema.
While you can use the FTP or WebDAYV interface to load the XML schema file to the Oracle XML DB repository, as
discussed in Chapter 8, we simply copy the file into the /public directory. You can do this from SQL, connected as

XDKUS/XDKUS, using the DBMS_XMLSCHEMA . registerURI() function that takes an XML DB repository URI path
from which to retrieve the schema file as follows:

begi n

DBMS_XMLSCHEMA. r egi st erURI (* http:// 1 ocal host : 8080/ publi c/faq. xsd',
"/ public/faq. xsd', TRUE, TRUE, FALSE, TRUE) ;

end;
/

Note that this file is being retrieved from the /public directory; however, this is a directory inside the Oracle XML DB
repository and not your local file system. There are two important reasons to store the schema in the database.
First, XML documents are sensitive to the character encoding they were created in. This cannot be overridden by
specifying the encoding in the XML declaration, as that attribute is only a hint to the parser if it can’t determine it
from the first few bytes. By storing the schema in the database, the encoding is converted, if necessary, to the
database encoding, thus ensuring the document will be successfully parsed.

Note An error stating that an unexpected character was found when < was expected at the start of the file
usually means the document has an incompatible encoding.

The other reason to use the repository is that you can be assured the schema will always be available as a link
without the need to configure proxies or firewalls and instantly retrievable for validation.

You can easily store the FAQ schema by using FTP or creating a WebDAYV folder under Windows. With the XML
database running, launch Internet Explorer and select File | Open. Enter http://localhost:8080/public/, check the
Open As Web Folder check box, and then click OK. You will now see the /public directory in the XML database
repository and can copy faq.xsd to it. Now you can register the schema.

Loading the FAQs

Now that you have created the database schema, you can store the FAQs. But first, to prevent duplicate FAQs, you
can create a SQL unique constraint on the value of <TITLE>. This can be done from SQL with the following:

ALTER TABLE f aq

ADD CONSTRAI NT TITLE_I'S_UNI QUE
UN QUE(xm data. " Tl TLE") ;

As discussed in the previous chapter, the XMLDATA refers to the XML Type Object storing the FAQs and
XMLDATA. "TITLE" can be used to refer to its child TITLE element.

To load Glossary.xml, the database directory XMLDIR is created using BFILE, by using the sys/password logon as

http://localhost:8080/public/

SYSDBA and executing the following commands from SQLPIlus:

CREATE DI RECTCRY XMLD R AS ' &os_directory';
GRANT READ ON DI RECTCRY XMLDIR TO xdkus;

At this point you have an option of uploading the FAQs via FTP or using web folders that use WebDAV as xdkus
user. When attempting to use FTP, you should use a client that permits copying files by generating successive PUT
commands. Since the XML database’s FTP server only supports the basic set of FTP commands, multiple file
operations and wildcard expansions are not available.

You can also create new directories or just use an existing directory in the repository to load the FAQs. However, to
ensure the FAQs are stored in the default table created by the XML schema registration, which is called FAQ, the
schemalocation attribute in each FAQ has to be the registered XML schema URL in the Oracle XML DB. In this
example, itis xsi:noNamespaceSchemalLocation="http://localhost:8080/public/faq.xsd". Therefore, each FAQ
must look like the following:

<FAQ xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : noNanespaceSchenalLocation="http://local host: 8080/ public/faq. xsd"
i d="0001" | ast updat e="2002-02- 26" >. </ FAQ>

Once you have the files loaded, you can confirm their successful storage by issuing this command from SQL*Plus:

SQ.> SELECT COUNT(1) FROM FAQ
COUNT(1)

Now that the XML and database schema is designed and the data loaded, you can turn to interfacing the database
to the web site using the XSQL Servlet from the XDK.

[« rreviovs [exr |

http://localhost:8080/public/faq.xsd

[rrevious finexry]
Connecting the FAQ Web Site to the XML Database

The XSQL servlet, introduced in Oracle8i and refined in Oracle9i and Oracle Database 10g, provides a robust and
flexible platform for this type of application. We will use it in the following ways:

m To generate the content from data stored in the database

m To provide a keyword search interface

m To display the results from the various queries in the browser using an interactive interface
m To manage the database connections

Figure 14-1 illustrates the FAQ web site’s home page, which is dynamically generated from the XSQL Servlet using
a combination of XML and XSL files.

e I [T - LAY =

Illlm

Ll
Figure 14-1: FAQ web site

Building the XSQL Home Page

From previous chapters, you know that the elements of an XSQLpage consist of the following sections:

<?xm version="1.0" encodi ng=" UTF- 8' ?>
<l-- Stylesheet Pls -->

<!-- Database Connection -->

<l-- XSQ. code and dat abase queries -->

However, to allow the web site to be modular and extensible, we will be parameterizing the XSQL pages where their
content will be added using XML files passed as an HTTP parameter. The following is the index.xsql page that will
serve as the base module:

<?xm version="1.0"?>
<?xm -stylesheet type="text/xsl" nedi a="nsi e" href="xsl/xdkus.xsl"?>
<?xm -stylesheet type="text/xsl" medi a="nozill a"
hr ef =" xsl / xdkus_ns. xsl "?>
<page xm ns: xsql ="urn: or acl e-xsql ">
<content >
<xsql : i f-param name="pagenane" exists="yes">
<xsql :include-xsql reparse="yes" href="{@agenane}. xsql "/ >
</ xsql :if-paranp
<xsql : i f-param name="pagenane" exists="no">
<xsgl :incl ude-xsqgl reparse="yes" href="1ist.xsql?cat=al | &np;
| ang=al | "/ >
</ xsql :if-paranp
</ cont ent>
</ page>

Note that it uses the <xsql:if-param>element introduced in Oracle Database 10g XDK to conditionally include XML
files. The first <xsql:if-param>element is called if a pagename parametersupplying the filename of an XSQL page
is passed in, while the second is called when no parameter is supplied. Therefore, when this page is first invoked, as
shown in Figure 14-1, the list.xsqlpage is included with parameters that specify the query should return all FAQs
acrossallprogramming languages.

Also included are two <?xml-stylesheet?> processing instructions. These differ by the media and href attributes
that the XSQL Servlet uses to perform the appropriate stylesheet transformation for the requesting browser.

Creating the FAQ List

Thelist.xsqlpage is the one that queries the database, returning XML from which the HTML page is created after
the stylesheet processing. To create this page, you need to specify the database queries that will be submitted as
well as the connection information for JDBC access.

You can begin by setting up the database connection. The following element declares the title of the page, the XSQL
namespace, and the alias for the database connection located in the XSQLConfig.xmlfile:

<page title="Cracle XML FAQ Denp" connection="xdkus" id="1" xnm ns:xsql=
"urn:oracl e-xsqgl ">

Thexdkus entry in the XSQLConfig.xml file that will be used to connect to the database is as follows:

<connecti on name="xdkus">
<user name>xdkus</ user nane>
<passwor d>xdkus</ passwor d>
<dbur| >jdbc: oracl e:t hi n: @ocal host: 1521: or cl </ dbur | >
<driver>oracle.jdbc.driver.Oracl eDriver</driver>
</connection>

Since the FAQs are stored as complete XML documents, if you want to produce an initial summary listing, as shown
inFigure 14-1, you need to extract the information instead of displaying the entire document. Although applying a
stylesheet on each returned FAQ could do this, it would be very inefficient and doesn’t leverage the power of the
XML database. Instead, you can use XPaths as illustrated in the following SQL query to retrieve only the data
required:

SELECT extractValue(val ue(x),'/FAQ TITLE) as title,
extractVal ue(val ue(x),'/ FAQ @tatus') as status,
extractVal ue(val ue(x),'/FAQ @d') as id
FROM faq x
order by id

Retrieving the IDs for each FAQ allows you to use them to construct a link to the full question and answer. This can
be done in the following XSL template included within list.xsl:

<xsl : for-each sel ect =" page/ RONSET/ RON >
<tr>
<xsl:attribute nanme="cl ass" >
<xsl : choose>
<xsl :when test="position() nmod 2
<xsl :when test="position() nod 2
</ xsl : choose>
</xsl:attribute>
<t d>
<xsl : val ue-of select="ID"/>:</td>
<t d>
<a href ="showAnswer.xsql?i d={I O} "
Oncl i ck=" NewW ndow(' showAnswer . xsql ?id={I1D}',"' {ID}',"' 600" ,"'400',
‘yes');
return fal se; ">
<xsl:value-of select="TITLE'/>
</ a>
<xsl:if test="STATUS = hot' ">

</ xsl:if>

1" >r owodd</ xsl : when>
0" >r oneven</ xsl : when>

</td>
<tr>
</xsl| :for-each>

This template does several things. First, it produces the alternating row colors in the table by using <xsl:choose>to
add a CSS attribute ROWODDorROWEVEN. It then makes a link of <TITLE> using JavaScript to pass the FAQ

ID to showanswer.xsql to display a new window with the answer. Finally, to indicate popular FAQs, the template
adds the hot.gif image.

Filtering the FAQ List

Since the FAQs are categorized by programming language and component, you will want to retrieve only relevant
FAQs. You can do this by passing parameters into a query. The XSQL Servlet facilitates your capability to do this,
as illustrated in the following section from list.xsql:

<xsql :i f - param nane="1 ang" not - equal s="al | ">
<xsqgl: acti on handl er="oracl e. xm . sanpl e. xsqgl . portal . Pagi ng"
rows-per-page="15" url - pagenane="i ndex. xsql ?pagenane=|i st &anp;
cat ={ @at} &anp; | ang={ @ ang} &anp; " >
<! [CDATA[
SELECT count (1)
FROM faq x
where extractVal ue(value(x),'/FAQ LANGUAGE/text()') ="' {@ang}"'
and extractValue(val ue(x),'/FAQ CATEGORY/text()') = {@at}"
11>
</xsql: acti on>
<xsql : query ski p-rows="{ @agi ng-ski p}" max-rows="{ @agi ng- max}">
<! [CDATA
SELECT extract Val ue(val ue(x),'/FAQ TITLE') as title,
extract Val ue(value(x),'/FAQ @tatus') as status,
extract Val ue(value(x),' /FAQ @d') as id
FROM f agq x
wher e extract Value(val ue(x),"'/FAQ LANQUAGE text()') = {@ang}'
and extract Val ue(value(x),'/FAQ CATEGORY/text()') = {@at}’
order by id
11>
</ xsql : query>
</xsql:if-param

Once again, <xsql:if-param> is used to be able to switch in another application section. Once the category
parameter,@cat, and the language parameter, @lang, are initialized by selecting from the pick lists, the queries are
populated and submitted. The first query returns the FAQ count that is used for pagination and the second query
returns the list of FAQs. Note that you can use XPaths in both sections of the query and that, when used in the
predicate,text() is appended in order to perform the string match.

[« Frevious Jiecr |

[« revious fnexr]
Adding Pagination to the FAQ Listing

Since there are over a hundred FAQs, you obviously will not want to return all of them at once. You can set up
pagination in an XSQL custom action handler that calls a Java class. In this case, we have created paging.java,
which accepts parameters from the XSQL page to set up the number of rows per page, rows-per-page, the URL for
the page to invoke, url-pagename, the next page parameter name, p, and the parameters to pass in the URL, url-
params. The following is a Java code fragment that performs the pagination:
public class Paging extends XSQLActionHandl erl npl {

private static final String PAGE_PARAM NAME = "p";

private static final String ROAMSPERPAGE "rows- per - page";

private static final String TARGETPAGEARGS "url - parans”;

private static final String PAGENAVE "url - pagename";

public voi d handl eActi on(Node root) throws SQException {
XSQLPageRequest req = getPageRequest();

Element actEIt = getActionBH enent();

/'l Get the count query fromthe action el enent content

String query = getActionH enment Content ();

/'l Get the nunmber of rows per page, defaulting to 10

| ong pageSi ze = longVal (getAttributeAll ow ngParan ROMPERPACE, act El t)
, 10);

I ong total Rows = longVal (firstGolumOf FirstRow(root, query), 0);

| ong cur Page = | ongVal (vari abl eVal ue(PAGE_PARAM NAME, actElt), 1);
/1l Get the name of the current page to use as the target
/1String pageName = cur PageNane(req);
/'l Get any URL param nanes that need to be echoed into paging URL's
String pageArgs = getAttri but eAll owi ngPar an{ TARGETPAGEARGS, actEl t);
String pageName = getAttri but eAll owi ngPar am{ PAGENAME, act El t) ;
/1 Calculate the total nunber of pages
| ong total Pages = total Rows / pageSize;
I ong fract = total Rows % pageSi ze;
if (fract > 0) total Pages++;
/1 Make sure current page is between 1 < cur < total Pages
if (curPage < 1) curPage = 1;if (curPage > total Pages)
cur Page = total Pages;
/'l Create the <paging> fragment to add to the "data page"
Docunment d = act H t. get OanerDocurent () ;
Element e = d. createH enent (" pagi ng");
r oot . appendChi | d(e) ;
addResul t Element (e, "total -rows", Long. toStri ng(total Rows));
addResul t El ement (e, "t otal -pages”, Long.toString(total Pages));
addResul t El enent (e, " current - page", Long. t oSt ring(cur Page)) ;
if (curPage < total Pages)
addResul tEl enent (e, "next- page", Long.toStri ng(cur Page+1)) ;
if (curPage > 1)
addResul tEl ement (e, " prev- page", Long.toStri ng(cur Page-1));
addResul t El enent (e, "t arget - page", pageNane) ;
if (pageArgs != null && !pageArgs.equal s(""))
addResul tEl enent (e, "target - args", expandedUr| Parans(pageAr gs,
actBt));
/'l Set to page-level paraneters that the <xsql:query> can use
req. set PagePar anm(" pagi ng-skip",
Long. toString((curPage-1)*pageSi ze));
req. set PagePar am(" pagi ng- max", Long. toStri ng(pageSi ze)) ;
}
/1l Get the name of the current page fromthe current page' s URI
private String curPageName(XSQ@ PageRequest req) {
String thisPage = req. get Sour ceDocurment URI () ; ;
int pos = thisPage.lastlndexOr('/");
if (pos >=0) thisPage = thi sPage. substring(pos+l);

pos = thisPage.indexC('?);
if (pos >=0) thisPage = thi sPage. substring(0, pos-1);
return thisPage;
}
}

This class is invoked by the <xsql:action handler> element, as in the following example from list.xsql:

<xsql :action handl er ="oracl e.xm . sanpl e. xsql . port al . Pagi ng"
r ows- per - page="15" url - pagenanme="i ndex. xsql ?
pagenane=li st &np; cat ={ @at } &anp; | ang={ @ ang} &anp; " >
<! [CDATA
SELECT count (1) FROM f aq
11>

</xsql: acti on>

Invoking this element will pass the three parameters to the pagingclass that will compute the total number of 15-
row pages from the total number of FAQs. This class will also set the paging-skip and paging-max parameters that
will be used in the following query to retrieve the correct set of questions:
<xsql : query ski p-rows="{ @agi ng-ski p}" max-rows="{@agi ng-max}">
<! [CDATA
SELECT extractVal ue(val ue(x),'/FAQ TITLE) as title,
extractVal ue(val ue(x),'/FAQ @tatus') as status,
extractVal ue(val ue(x),'/ FAQ @d') as id
FROM faq x
order by id
11>

</xsql: query>

Now all that you need to do is create a Next link that increments the p parameter to display successive FAQ pages.
This is done by creating the following link to pass a new set of parameters to index.xsql and subsequently list.xsql:

http://1 ocal host : 8988/ xdkus/ app_f aq/i ndex. xsql ?
pagenamne=| i st &cat =al | & ang=al | &=2

Each time p is incremented, a new set of 15 FAQs is displayed until the maximum is reached.

[« rreviovs [nexr s |

http://localhost:8988/xdkus/app_faq/index.xsql?

[rrevious finexry]
Displaying the FAQ and Answers

In a previous section, you saw how the link is created to invoke the showanswer.xsqlpage that displays the FAQ.
Now we will discuss how this actually works. This page is invoked by passing the selected FAQ id as a parameter in
the following URL:

http://1 ocal host : 8988/ xdkus/ app_f ag/ showAnswer . xsql ?i d=16

Figure 14-2 shows the XML transformed into the HTML display of the output.

0L FAD - Wiarsenh It gt -l
-
XML Frequently Asked Question
+Back Llose

Hew €an | set the encoding the output of the X5U querny?

O of my CUStomer exeoles A queny using XS0 on a tabke with diacrivical
Characters, gets the result i a Clab, and pats i a fle. It works Tine, bat he
meisils fo mosdify The encading.madaly tha line

<7am] wiriion="1.0" 7=
LLi]

Pl v Ton="1.0" ancoding="150-8558-17 7>

How can he do tha?
Answer:

Your should be able to set the encodingdeclaration in XML Plusing the
CEMS_XMLOUVERY setEncodng Tag procedure, which will not do the enceding
conwversion, this encoding after the query or & will cause the

As data s returmesd m CLOE, the XML data will always be converted Lo BCS 2

{ ALVSUTF 16y encoding by database if the database is in multiyte or the
database Charster sel il the database s n singbe byte. Wisen you S1ore the guery
resull to files, you should take care of the characterset coversion to make sure
there is no conflict between the adual coding and enceding declaration

Belated FAD

Cogyright £ ORACLE XML Development 2003

Figure 14-2: FAQ answer in HTML

Theidis then passed into the following query to retrieve the FAQ data:

<xsql :i nclude-xm >
<![CDATA[
sel ect xmnlel ement ("FAQ',

xm forest(extract(val ue(x),'/FAQ ANSVER) as answer,
extract(value(x),' /FAQ TITLE/ text()') as title,
extract (value(x),'/FAQ QUESTI ON') as questi on,
extract(value(x),'/FAQ @d) as id)).getdobVal ()

fromfaq x
wher e extract Value(val ue(x),'/FAQ @d')="{@d}’
11>

</ xsql :incl ude-xm >

If you examine this query, you'll see that it uses the SQL/XML extensions in the database to construct a new XML
document. To simply include the XML output from SQL/XML queries, you can use <xsql:include-xml> instead of
<xsql:query> as it doesn’t add the <ROWSET> and <ROW> elements. The following is an example of this
document before it is transformed into HTML by the showAnswer.xsl stylesheet:
<page id="1">
<FAQ>
<ANSVER>
<ANSV\ER>
<PARAGRAPH> You should be able to set the
<KEYWORD>encodi ng</ KEYWORD> decl aration in XML Pl using the
DBME_XM.QUERY. set Encodi ngTag() procedur e,
which will not do the encodi ng conversi on. </ PARAGRAPH>
<PARAGRAPH> As data is returned i n <KEYWDRD>CLOB</ KEYWORD>,

http://localhost:8988/xdkus/app_faq/showAnswer.xsql?id=16

the XM. data will always be converted to <KEYWDRD>UCS2</ KEYWCRD>
(<KEYWORD>AL16UTF16</ KEYWORD>) encodi ng by database if the
dat abase is in multibyte or the database character set if the
dat abase is in single byte. Wien you store the query result
to files, you should take care of the characterset conversion
to make sure there is no conflict between the actual codi ng and
encodi ng declarati on. </ PARAGRAPH>
</ ANSVER>
</ ANSVEER>
<TlI TLE>How can | set the encoding the output of the XSU query?</Tl TLE>
<QUESTI ON>
<QUESTI ON\N>
<PARAGRAPH>One of my customers executes a query using XSU on a
table with diacritical characters, gets the result in a CLCB,
and puts it ina file. It works fine, but he needs to nodify the
encodi ng, nodify the |ine: </ PARAGRAPH>
<CDE><?xm version="1.0" ?></ CODE> to <QODE><?xm version="1.0"
encodi ng="iso0-8859- 1" ?></CODE>
<PARAGRAPH>How can he do t hat ?</ PARAGRAPH>
</ QUESTI ON>
</ QUESTI ON>
<l D>2</ | D>
</ FAQ>

Note that the four top-level elements, <KANSWER>, <TITLE>, <QUESTION>, and <ID>, were retrieved using the
extract()function passing in the respective XPaths.

To display this FAQ in HTML, you need to apply a stylesheet. This is done for you by including a stylesheet
processing instruction in showanswer.xsql and having the XSQL Servlet apply it for you. The following is in our
example:

<?xm -stylesheet type="text/xsl" href="xsl/showAnswer.xsl" ?>

This stylesheet is quite long because it sets up tables, but it is useful to examine the templates that actually operate
over the input FAQ XML document. First, the <PARAGRAPH> sections need to be formatted. This is done with the
identity transform template, introduced in Chapter 3, as follows:

<xsl : tenpl at e mat ch="PARAGRAPH" >

<p>

<xsl:apply-tenpl ates sel ect="*| @|conment ()| processi ng-i nstruction()
[text()"/>

</ p>

</xsl:tenpl at e>

Next, the <CODE> elements need to be presented in a fixed font. This is accomplished with the following template:

<xsl :tenpl ate match="CODE" >
<pr e>
<xsl:value-of select="."/>
</pre>
</xsl:tenpl at e>

Next, turning to the main sections of the answer, these will be formatted in the main template of the stylesheet. First,
we see that the FAQ title has special formatting. This is done with the following section, which uses a CSS class to
provide the special formatting:
<tr valign="top">

<th class="portletTitle">

<xsl : val ue-of di sabl e-out put -escapi ng="yes" sel ect ="page/ FAQ TITLE"/ >

</th>

</[tr>

Note Throughout these examples, you will see that CSS classes are used to provide formatting. You should
adopt this technique, because it makes your stylesheets easier to build, and the formatting is reusable.

Next, we see that the answer is identified with Answer: and a different background color. The following section

shows how this is done:

<tr bgcol or =" #FOFOF0" >
<td wi dth="100% >
Answer: </ b>
<br/ >
<xsl : appl y-t enpl ates sel ect ="page/ FAQ ANSWER' ANSVEER"/ >
</td>
</tr>

Finally, you need to add navigational controls to this page, such as Back and Close. You can do this by adding
JavaScript commands to the template as follows:
<tr>
<t d>
<inmg src="inmages/r_arrow. gif" w dth="8" hei ght="9"/>
Back
</td>
<td align="right">
<ing src="inages/r_arrow. gif" w dth="8" hei ght="9"/>
Cl ose
</td>
</tr>

Note that both the text of the commands and an arrow graphic are inserted when the template is applied.

[« Freviovs [et |

[« Freviovs [nexrs]

Creating a Glossary

A useful function in any FAQ site is to have an online glossary that displays definitions of important technical terms
when users click on the corresponding words. You can implement this feature in your FAQ site by marking up terms
as <KEYWORD> elements and then creating links dynamically through XSLT to retrieve their definitions from a
glossary table in the database. In this example, we have already created a glossary file in XML format that can be
used.

Creating the Glossary Schema

First you need to create a glossary table in the database in which to store the definitions. It is not important that the
glossary data is stored as XML, therefore, you can create a simple table as follows:

CREATE TABLE GLOSSARY(
I D NUVBER,
NAMVE VARCHAR2(30) ,
CONTENT VARCHAR2(4000)

):
CREATE SEQUENCE gl ossary_seq START WTH 100;

CREATE or replace TRIGGER gl ossary_insert
BEFORE | NSERT ON gl ossary
FOR EACH ROW
BEG N
sel ect gl ossary_seq. nextval into :new.id fromdual;
END;
/
show errors;

This SQL script creates a simple three-column table to store the ID, NAME, and CONTENT for each term. It also
creates a sequence and a trigger to update the sequence so that the IDs are generated automatically every time a
new entry is inserted.

Loading the Glossary

The supplied glossary file is called glossary .xml and will be loaded directly into the table using the
DBMS_XMLSave package available in the database. The XML format for the glossary data is provided in the
required canonical form:

<ROW nun¥"1" >

<NAME>API </ NAVE>

<CONTENT>(Appl i cati on Program Interface) A set of public programatic

interfaces that consi st of a |language and nessage format to conmuni cat e

with an operating system or other programmatic environment such as

dat abases, Wb servers, JVMs, etc. These nmessages typically call

functions and nethods available for application devel opnent.

</ CONTENT>
</ RO\

All of these entries are contained within a <ROWSET> root element that will permit the entire document to be
inserted at one time. The following PL/SQL script performs the insert:

DECLARE
i nsG x DBMS_XM.Save. ct xType;
rows NUMBER,
BEG N
insQx := DBVS_XM.Save. newContext (' GLCSSARY') ;
rows : = DBMS XM.Save. i nsert XM.(i nsCtx, FileToCl ob('glossary.xm "'));
DBMS_XM.Save. cl oseCont ext (i nsQ x) ;
DBMS_OUTPUT. put_line(rows||' of data in glossary have been updated.');

END;
/
show errors;

Note that even though a num="" attribute is included in the file, this is not used to index the entry. This is because
attributes are not mapped by DBMS_XMLSAVE nor by DBMS XMLSTORE or
oracle.xml.sql.query.OracleXMLQuery() for data insertions. The CREATE SEQUENCE command ends up
creating the ID to retrieve the item. In order to do the insertion, you need to first set the context to your table, in this
case GLOSSARY. Then you can populate the rows in the table by using insertXML(), which accepts a CLOB that
was populated using FiletoCLOB () to load glossary .xml.All that is left to do is to close the context, thus
committing the changes.

Linking to the Glossary

Now that the glossary is loaded, you just need to be able to associate keywords within <KEYWORD> elements in
your FAQs with the glossary and insert links. To do this, you need to query the retrieved FAQ answer for keywords.
This is done in showAnswer.xsqlwith the following code:
<page>
<@L OSSARY>
<xsql : query>
<! [CDATA
SELECT name, id FROM gl ossary
VWHERE nane in (
SELECT extract Val ue(val ue(e), 'KEYWDRD) FROM faq p,
t abl e(xm sequence(p. extract (' / FAQ/KEYWORD))) e
VWHERE p. xm data.id={@d})]]1>
</ xsql : query>
</ GLOSSARY>
</ page>

The query first uses the EXTRACT('/FAQ//IKEYWORD") function to get the <KEYWORD> elements in the FAQ.
Then using XMLSEQUENCE() and TABLE(), a table is created containing the set of <KEYWORD> elements in
XMLType. This table is then used to create a collection of values of keywords using EXTRACTVALUE() and only
the NAME and ID for each glossary item are returned by the query.

Note that you are only trying to retrieve the set of IDs associated with the keywords found anywhere in the FAQ, as
specified by the double-slash (//) in front of KEYWORD in p.extract(). Don’t confuse the two IDs specified in the
query: the one in the SELECT is the glossary ID and the one in the predicate is the FAQ ID. An example of the
actual query output is as follows:

<@ OSSARY>
<ROWNGET>
<ROW nun¥" 1">
<NAVME>CLASSPATH</ NAMVE>
<ID>>113</1 D>
</ RONF
</ RONBET>
</ GLOSSARY>

In this case, one keyword was found and it has 113 as its ID. Only those keywords that have glossary entries are
returned.

With the keyword IDs retrieved, the remaining task is to create a link in the HTML page. This is done in a template in
showAnswer.xsl as follows:

<xsl : tenpl at e match="KEYWRD" >
<xsl :variabl e name="content ">
<xsl:value-of select="./text()"/>
</ xsl:vari abl e>
<xsl :variabl e nane="gl ossary" >
<xsl : val ue-of sel ect ="/ page/ Q.OSSARY/ ROASET/ ROW NAME/ t ext ()=
$content]/ 1D/ >
</ xsl :vari abl e>
<xsl: choose>
<xsl : when test="%gl ossary">

<xsl :val ue- of select="."/>

</ xsl : when>
<xsl: ot herwi se>

<xsl : val ue- of select="."/>
</ b>
</ xsl : otherw se>
</ xsl: choose>
</xsl :tenpl at e>

Because this template is complex, we will examine it closely. First, variables are used, because you need to pass in
the ID dynamically to the link. These variables are used together. The content variable is simply the keyword. This is
then reused in the glossary variable to create the XPath that selects the ID.

The functional portion of the template is a choice between two formatting actions. If there is an instance of the
glossary variable, then the test in <xsl:when> returns true and a link is created that passes the ID to a new page,
showGlossary.xsql, to display the glossary item. If the test fails, then the <xsl:otherwise> section is executed,
formatting the keyword in bold. This formatting flags these keywords for inclusion in the glossary.

Displaying the Glossary Definitions

Now that the links to keywords in the FAQ answers are added, we can turn to examine how the page displaying the
definition is created. As specified by the following example link, this is once again performed by an XSQL page:

http://1 ocal host: 8988/ xdkus/ app_f aq/ showd ossary. xsql ?i d=100

Theshowglossary.xsql page is very simple, as shown here:

<?xm version="1.0" encodi ng='" UTF- 8' ?>
<?xml -stylesheet type="text/xsl" href="xsl/showd ossary. xsl" ?>
<page id="1" connection="xdkus" xml ns: xsql ="urn: oracl e-xsql" >
<xsql : query>
<! [CDATA
SELECT NAME, QOONTENT
FROM GLOSSARY
VWHERE i d={ @ d}
11>
</ xsql : query>
</ page>

This page simply executes one query to retrieve the NAME and CONTENT from the GLOSSARY table and apply
theshow Glossary.xsl stylesheet to convert to HTML. The following is the XML output for CLASSPATH:

<?xm version="1.0" encodi ng="UTF-8" ?>
<?xm -stylesheet type="text/xsl" href="xsl/showd ossary. xsl" ?>
<page id="1">
<ROWBET>
<ROW nun¥"1">
<NAME>CLASSPATH</ NAVE>
<CONTENT>The operati ng systemenvironnmental variable that the JW uses
to find the classes it needs to run applicati ons. </ CONTENT>
</ RON
</ ROWBET>
</ page>

This stylesheet incorporates the same types of transformations discussed previously for showAnswer.xsl in the
section“Displaying the FAQ and Answers.”

[« rreviovs [ecr s |

http://localhost:8988/xdkus/app_faq/showGlossary.xsql?id=100

[« revious fnexr]
Searching the FAQs

No FAQ site would be fully functional without the ability to perform text searches. This site uses the Oracle Text
search engine to search XML either as content or structurally using XPaths. The index.xsql page combines these
text searches with category searches to create a single result, as evidenced by the following sample query for all
Java components that reference DOM:

http://1 ocal host : 8988/ xdkus/ app_f aq/i ndex. xsql ?
pagenane=sear ch&sear ch=DOM&cat =al | & ang=JAVA

This URL links to a new XSQL page, search.xsql, that performs a direct search instead of the browse action
discussed previously. This page has all the same elements as list.xsql except that it takes an additional parameter,
search, and it has an additional predicate, as shown in the following query:
<xsql : query ski p-rows="{ @agi ng-ski p}" max-rows="{@agi ng- max}">
<! [CDATA
SELECT extractVal ue(val ue(x),' /FAQ TITLE') as title,
extractVal ue(val ue(x),'/FAQ @d') as id
FROM faq x
wher e extractVal ue(val ue(x),'/FAQ LANGUAGE/text()') =" {@ ang}"’
and cont ains(val ue(x),"'{@earch}')>0
order by id
11>

</xsql: query>

Note that the Oracle Text CONTAINS() function is now added to the WHERE clause to narrow the selection
process further. The output from this page will again be a list of FAQs that is displayed using the identical paging
and listing code discussed earlier.

[« Frevious Jiecr |

http://localhost:8988/xdkus/app_faq/index.xsql?

[« erevious [e |

Summary

In this chapter you have seen how to create a content management and web publishing application utilizing Oracle
XML DB 10g features and Oracle XDK components, including the powerful functionality of the XSQL Servlet. We
have combined XML documents, XML Schema, and XSLT with Java, JavaScript, and SQL to create a compelling
application. Using this application as a base, we will add more sophisticated features in Chapter 15, transforming it
into a portal site.

[erevious [e |

[T [

Chapter 15: Creating a Portal Site with XML and Web
Services

Web sites are moving from static sets of pages to dynamic personalized portals of information. Oracle has obviously
recognized this movement, as demonstrated by its sophisticated Oracle Portal product, but what isn’t often realized
is that this functionality can be set up on a smaller scale with the XML technology offered in the Oracle XDK and
XML database. In this chapter, you will take the FAQ web site put together in the previous chapter and add Portal
functionality to it. This will include building a login area, dynamic page areas, web service areas, and a customization

area.

Designing the Framework

The idea behind this portal site is to build it to serve the purposes of a development team who can use it as a home
page for all documentation, tips, latest developments, status, and FAQs. This site needs to leverage the previously
introduced concept of modularity so that the site can continually be customized and expanded as needed. This
framework consists of a set of XSQLpages that were called from each other with appropriate parameters to alter
behavior or display dynamic content. What we are going to introduce now is how to combine this modularity into
single container pages whose content is supplied by several XSQL pages firing at once.

Figure 15-1 shows what the finished site will look like. As you can see, it contains new areas that were not on the
FAQ site. Reviewing clockwise, you'll note a new What's New area (where the FAQ list was) that has links to the
latest interesting XML articles, displaying ten links at a time. Next is a new login area for XDK users, with the
requisite Name and Password fields. This area serves as the major user action area of the page and is handled by a
separate XSQLpage. It also will be used as a role-specific link area after a successful login.

=T
Bk = - St Pt | Buda - " P [Yes Tpoe [en S
L I e e E
3
Oraele XML Dovelopmont Parial
W o P |y Choac e KT
- Whar's Haw [Py w1l ot 27 T

o i, Copral cent®y 1% o sk 13 I

e, Toc ki g VL s e ke i

- ([Baks s

DI PRORCINE | ity s, pervacen o e 86 mi e

VL Damice

LA, Cchemy | M0

ey T s g e £ s W
* KECL Pages Dary . g
P e B g Here L (P, | o eyl d aomea (T
« XD B - by F shs g DR
1K Decammatains i 4
= XK
L o e v
_-‘I—*— ik ur o i preeystor = wd e
-t =
s BAL Ersatfar e 2 ooy
T e T e
BTy ——"
UL Sppmn '
Jacwaar bar et r i e o

s s B b1 s s el T e P S R s o b 1 BT

-
el et

Figure 15-1: Finished Oracle XML Development Group portal site

Below the login area is the Hot Topics area, which appears as a list of links but actually is dynamically generated
from a web service that is supplied by the Oracle Technology Network (OTN) site. The web service provider,
employing a push model, keeps this area current; you will include it on your site by using another XSQL page. Below
the Hot Topics area is a Hot Links area, which is actually populated by XML content from a file. Finally, the left-hand
bar serves as a static area that repopulates the center area when its links are clicked with content from queries
executed by the series of XSQL pages linked here.

You will also be creating an administrative page to facilitate adding users, content, links, etc. This will be a separate
role based upon the permission level of the user login, using the page illustrated in Figure 15-2. Note that the login
area has specific links for this role and that the left-hand bar now displays administrative tasks, such as inserting or
updating a news item, adding links, and approving new users.

et

Bak = - [. - " P B Yes Fpon [an e

o], 1an p—— E)
Omncle XML Dovelopmoent Portsl
MU« Pompment |y L i AT
L E i e ‘ugt 1 oFB Telui 12
el * |d|--||r.-|u i, ey Goaaeal
« ipday Frp e o | b e iy 1 W] ey el e [0 e ST
pag il 05 00
AT T ————Tr— ey .
':'. = el e e w0 Bl by drmie o e el iy o b T
" M- Bdarch 12,3004)
Unisis

ALH Wwrm
g Aor gt o

AT I Pl Tl L B D e T R iy T Bt T T i P AL
TR ATRTA R v N MR I e g ey
-

sk [T I
Sba AP, Co vl T O 7 e S el o I) Db
P iF st s 10 2008
S
Fetooiy 11 2I0
Fiop g g L 1y e R, 3 e L
oy B 0]

(B4 Rna g pienre e LDy 1AL T A e bt

-,

o |Bww I]

Figure 5-2: Development Group portal administrative page

Turning to how this web site is designed, an XSQL container page is used to call additional XSQL pages to populate
the areas, as shown in the following listing for index.xsql:
<?xm version="1.0"?>
<?xm -stylesheet type="text/xsl" nmedi a="nsi e" href="xsl/xdkus.xsl"?>
<?xm -stylesheet type="text/xsl" nedi a="nozilla"
hr ef =" xsl / xdkus_ns. xsl " ?>
<page xm ns: xsql ="urn: or acl e-xsqgl ">
<l ogi n>
<xsql :i nclude-xsqgl reparse="yes" href="1ogin.xsql"/>
</l ogi n>
<nav>
<xsql :i nclude-xm href="xm /nav.xm "/ >
</ nav>
<li nk>
<xsql :i nclude-xm href="xm /Iink.xm"/>
</link>
<cont ent>
<xsql :i f - par am name="appnane" exi sts="yes">
<xsql :include-xsql reparse="yes" href="app_{@ppnane}/index.xsql"/>
</xsql:if-paranmp
<xsql :i f - par am name="appnane" exi st s="no">
<xsql : i f- param name="pagenane" exists="yes">
<xsql :i ncl ude- xsqgl reparse="yes" href="{@agenanme}.xsql"/>
</ xsql :if-paranp
<xsql : i f- param name="pagenanme" exists="no">
<xsql :i ncl ude- xsqgl reparse="yes" href="app_news/ news. xsql ?
cat =xdk"/ >
</ xsql :i f-paranp
</xsql:if-paranp
</ cont ent>
<t opi c>
<xsqgl : i ncl ude- xsqgl href="app_news/ot nnews.xsql"/>
</t opi c>
</ page>

Examining this listing, you wil